BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 18287280)

  • 1. Prediction of reversibly oxidized protein cysteine thiols using protein structure properties.
    Sanchez R; Riddle M; Woo J; Momand J
    Protein Sci; 2008 Mar; 17(3):473-81. PubMed ID: 18287280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of redox-sensitive cysteines using sequential distance and other sequence-based features.
    Sun MA; Zhang Q; Wang Y; Ge W; Guo D
    BMC Bioinformatics; 2016 Aug; 17(1):316. PubMed ID: 27553667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The basics of thiols and cysteines in redox biology and chemistry.
    Poole LB
    Free Radic Biol Med; 2015 Mar; 80():148-57. PubMed ID: 25433365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation of disulfide bond in p53 correlates with inhibition of DNA binding and tetramerization.
    Sun XZ; Vinci C; Makmura L; Han S; Tran D; Nguyen J; Hamann M; Grazziani S; Sheppard S; Gutova M; Zhou F; Thomas J; Momand J
    Antioxid Redox Signal; 2003 Oct; 5(5):655-65. PubMed ID: 14580323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein thiol modifications visualized in vivo.
    Leichert LI; Jakob U
    PLoS Biol; 2004 Nov; 2(11):e333. PubMed ID: 15502869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications.
    Guo J; Gaffrey MJ; Su D; Liu T; Camp DG; Smith RD; Qian WJ
    Nat Protoc; 2014 Jan; 9(1):64-75. PubMed ID: 24336471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxidoreduction of protein thiols in redox regulation.
    Ghezzi P
    Biochem Soc Trans; 2005 Dec; 33(Pt 6):1378-81. PubMed ID: 16246123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant DEFENSE.
    Beer SM; Taylor ER; Brown SE; Dahm CC; Costa NJ; Runswick MJ; Murphy MP
    J Biol Chem; 2004 Nov; 279(46):47939-51. PubMed ID: 15347644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Click-PEGylation - A mobility shift approach to assess the redox state of cysteines in candidate proteins.
    van Leeuwen LAG; Hinchy EC; Murphy MP; Robb EL; Cochemé HM
    Free Radic Biol Med; 2017 Jul; 108():374-382. PubMed ID: 28366801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cysteine/cystine couple is a newly recognized node in the circuitry for biologic redox signaling and control.
    Jones DP; Go YM; Anderson CL; Ziegler TR; Kinkade JM; Kirlin WG
    FASEB J; 2004 Aug; 18(11):1246-8. PubMed ID: 15180957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein cysteine modifications: (1) medical chemistry for proteomics.
    Nagahara N; Matsumura T; Okamoto R; Kajihara Y
    Curr Med Chem; 2009; 16(33):4419-44. PubMed ID: 19835564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of redox sensitive thiols of protein disulfide isomerase using isotope coded affinity technology and mass spectrometry.
    Kozarova A; Sliskovic I; Mutus B; Simon ES; Andrews PC; Vacratsis PO
    J Am Soc Mass Spectrom; 2007 Feb; 18(2):260-9. PubMed ID: 17074504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of structural parameters of peptides on dimer formation and highly oxidized side products in the oxidation of thiols of linear analogues of human beta-defensin 3 by DMSO.
    Liu S; Zhou L; Chen L; Dastidar SG; Verma C; Li J; Tan D; Beuerman R
    J Pept Sci; 2009 Feb; 15(2):95-106. PubMed ID: 19108000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global methods to monitor the thiol-disulfide state of proteins in vivo.
    Leichert LI; Jakob U
    Antioxid Redox Signal; 2006; 8(5-6):763-72. PubMed ID: 16771668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of cysteine thiol modifications based on protein microenvironments and local secondary structures.
    Bhatnagar A; Bandyopadhyay D
    Proteins; 2018 Feb; 86(2):192-209. PubMed ID: 29139156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton sharing between cysteine thiols in Escherichia coli thioredoxin: implications for the mechanism of protein disulfide reduction.
    Jeng MF; Holmgren A; Dyson HJ
    Biochemistry; 1995 Aug; 34(32):10101-5. PubMed ID: 7640264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Counting the number of disulfides and thiol groups in proteins and a novel approach for determining the local pKa for cysteine groups in proteins in vivo.
    Bellacchio E; McFarlane KL; Rompel A; Robblee JH; Cinco RM; Yachandra VK
    J Synchrotron Radiat; 2001 May; 8(3):1056-8. PubMed ID: 11486415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein thiols undergo reversible and irreversible oxidation during chill storage of ground beef as detected by 4,4'-dithiodipyridine.
    Rysman T; Jongberg S; Van Royen G; Van Weyenberg S; De Smet S; Lund MN
    J Agric Food Chem; 2014 Dec; 62(49):12008-14. PubMed ID: 25382278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic detection of oxidized and reduced thiol proteins in cultured cells.
    Cuddihy SL; Baty JW; Brown KK; Winterbourn CC; Hampton MB
    Methods Mol Biol; 2009; 519():363-75. PubMed ID: 19381595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.