These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18287495)

  • 1. Inhibitory gating of vibrissal inputs in the brainstem.
    Furuta T; Timofeeva E; Nakamura K; Okamoto-Furuta K; Togo M; Kaneko T; Deschênes M
    J Neurosci; 2008 Feb; 28(8):1789-97. PubMed ID: 18287495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corticofugal control of vibrissa-sensitive neurons in the interpolaris nucleus of the trigeminal complex.
    Furuta T; Urbain N; Kaneko T; Deschênes M
    J Neurosci; 2010 Feb; 30(5):1832-8. PubMed ID: 20130192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intersubnuclear connections within the rat trigeminal brainstem complex.
    Jacquin MF; Chiaia NL; Haring JH; Rhoades RW
    Somatosens Mot Res; 1990; 7(4):399-420. PubMed ID: 2291376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrissal responses of thalamic cells that project to the septal columns of the barrel cortex and to the second somatosensory area.
    Bokor H; Acsády L; Deschênes M
    J Neurosci; 2008 May; 28(20):5169-77. PubMed ID: 18480273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholinergic modulation of vibrissal receptive fields in trigeminal nuclei.
    Timofeeva E; Dufresne C; Sík A; Zhang ZW; Deschênes M
    J Neurosci; 2005 Oct; 25(40):9135-43. PubMed ID: 16207872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Angular tuning bias of vibrissa-responsive cells in the paralemniscal pathway.
    Furuta T; Nakamura K; Deschenes M
    J Neurosci; 2006 Oct; 26(41):10548-57. PubMed ID: 17035540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoanatomical separation of vibrissal trigeminal primary afferents in the rat: a special central representation of supraorbital vibrissae.
    Páli J; Baldauf ZA; Szentpétery Z; Szabo Z; Herczeg L; Görcs TJ
    Somatosens Mot Res; 2002; 19(3):245-54. PubMed ID: 12396582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of multiwhisker-receptive fields in subcortical stations of the vibrissa system.
    Timofeeva E; Lavallée P; Arsenault D; Deschênes M
    J Neurophysiol; 2004 Apr; 91(4):1510-5. PubMed ID: 14668302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corticofugal projection patterns of whisker sensorimotor cortex to the sensory trigeminal nuclei.
    Smith JB; Watson GD; Alloway KD; Schwarz C; Chakrabarti S
    Front Neural Circuits; 2015; 9():53. PubMed ID: 26483640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential effects of peripheral damage on vibrissa-related patterns in trigeminal nucleus principalis, subnucleus interpolaris, and subnucleus caudalis.
    Chiaia NL; Bennett-Clarke CA; Rhoades RW
    Neuroscience; 1992 Jul; 49(1):141-56. PubMed ID: 1328930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-DG uptake patterns related to single vibrissae during exploratory behaviors in the hamster trigeminal system.
    Jacquin MF; McCasland JS; Henderson TA; Rhoades RW; Woolsey TA
    J Comp Neurol; 1993 Jun; 332(1):38-58. PubMed ID: 8390494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate for cross-talk inhibition between thalamic barreloids.
    Desîlets-Roy B; Varga C; Lavallée P; Deschênes M
    J Neurosci; 2002 May; 22(9):RC218. PubMed ID: 11978859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Descending Circuit Derived From the Superior Colliculus Modulates Vibrissal Movements.
    Kaneshige M; Shibata KI; Matsubayashi J; Mitani A; Furuta T
    Front Neural Circuits; 2018; 12():100. PubMed ID: 30524249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temporal frequency of whisker movement. I. Representations in brain stem and thalamus.
    Sosnik R; Haidarliu S; Ahissar E
    J Neurophysiol; 2001 Jul; 86(1):339-53. PubMed ID: 11431515
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Projections from the insular cortex to pain-receptive trigeminal caudal subnucleus (medullary dorsal horn) and other lower brainstem areas in rats.
    Sato F; Akhter F; Haque T; Kato T; Takeda R; Nagase Y; Sessle BJ; Yoshida A
    Neuroscience; 2013 Mar; 233():9-27. PubMed ID: 23270856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Timecourse of development of the wallaby trigeminal pathway. I. Periphery to brainstem.
    Waite PM; Marotte LR; Leamey CA
    J Comp Neurol; 1994 Dec; 350(1):75-95. PubMed ID: 7860801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of Whisking and Touch Signals in the Rat Brainstem.
    Ebert C; Bagdasarian K; Haidarliu S; Ahissar E; Wallach A
    J Neurosci; 2021 Jun; 41(22):4826-4839. PubMed ID: 33893218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of the spinal trigeminal nucleus in star-nosed moles.
    Sawyer EK; Leitch DB; Catania KC
    J Comp Neurol; 2014 Oct; 522(14):3335-50. PubMed ID: 24715542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Organization of the nervous system after coagulation of the follicles of mystacial vibrissae in the newborn mouse: an example of neuronal plasticity].
    Farkas-Bargeton E; Savy C; Verley R
    Rev Neurol (Paris); 1986; 142(3):215-25. PubMed ID: 3492023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new thalamic pathway of vibrissal information modulated by the motor cortex.
    Urbain N; Deschênes M
    J Neurosci; 2007 Nov; 27(45):12407-12. PubMed ID: 17989305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.