BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18287549)

  • 1. Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia.
    Prodoehl J; Yu H; Wasson P; Corcos DM; Vaillancourt DE
    J Neurophysiol; 2008 Jun; 99(6):3042-51. PubMed ID: 18287549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of individual basal ganglia nuclei in force amplitude generation.
    Spraker MB; Yu H; Corcos DM; Vaillancourt DE
    J Neurophysiol; 2007 Aug; 98(2):821-34. PubMed ID: 17567775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmission of the subthalamic nucleus oscillatory activity to the cortex: a computational approach.
    Hadipour Niktarash A
    J Comput Neurosci; 2003; 15(2):223-32. PubMed ID: 14512748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional organization of the basal ganglia: therapeutic implications for Parkinson's disease.
    Obeso JA; Rodríguez-Oroz MC; Benitez-Temino B; Blesa FJ; Guridi J; Marin C; Rodriguez M
    Mov Disord; 2008; 23 Suppl 3():S548-59. PubMed ID: 18781672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blood oxygenation level-dependent activation in basal ganglia nuclei relates to specific symptoms in de novo Parkinson's disease.
    Prodoehl J; Spraker M; Corcos D; Comella C; Vaillancourt D
    Mov Disord; 2010 Oct; 25(13):2035-43. PubMed ID: 20725915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of Parkinson's disease on the functional connectivity of the motor loop of human basal ganglia.
    Rodriguez-Sabate C; Morales I; Monton F; Rodriguez M
    Parkinsonism Relat Disord; 2019 Jun; 63():100-105. PubMed ID: 30833228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the activity of the internal globus pallidus-pedunculopontine loop on the transmission of the subthalamic nucleus-external globus pallidus-pacemaker oscillatory activities to the cortex.
    Hadipour Niktarash A; Shahidi GA
    J Comput Neurosci; 2004; 16(2):113-27. PubMed ID: 14758061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry.
    Joel D; Weiner I
    Brain Res Brain Res Rev; 1997 Feb; 23(1-2):62-78. PubMed ID: 9063587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theory about a role of the hyper direct pathway in pattern expression by the basal ganglia.
    Jourdan I; Barttfeld P; Zanutto BS
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5472-5. PubMed ID: 21096287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing functional MRI protocols for small, iron-rich basal ganglia nuclei such as the subthalamic nucleus at 7 T and 3 T.
    de Hollander G; Keuken MC; van der Zwaag W; Forstmann BU; Trampel R
    Hum Brain Mapp; 2017 Jun; 38(6):3226-3248. PubMed ID: 28345164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Region of interest template for the human basal ganglia: comparing EPI and standardized space approaches.
    Prodoehl J; Yu H; Little DM; Abraham I; Vaillancourt DE
    Neuroimage; 2008 Feb; 39(3):956-65. PubMed ID: 17988895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Input-output organization of the sensorimotor striatum in the squirrel monkey.
    Flaherty AW; Graybiel AM
    J Neurosci; 1994 Feb; 14(2):599-610. PubMed ID: 7507981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced basal ganglia function when elderly switch between coordinated movement patterns.
    Coxon JP; Goble DJ; Van Impe A; De Vos J; Wenderoth N; Swinnen SP
    Cereb Cortex; 2010 Oct; 20(10):2368-79. PubMed ID: 20080932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental changes in the organization of functional connections between the basal ganglia and cerebral cortex.
    Greene DJ; Laumann TO; Dubis JW; Ihnen SK; Neta M; Power JD; Pruett JR; Black KJ; Schlaggar BL
    J Neurosci; 2014 Apr; 34(17):5842-54. PubMed ID: 24760844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans.
    Vaillancourt DE; Mayka MA; Thulborn KR; Corcos DM
    Neuroimage; 2004 Sep; 23(1):175-86. PubMed ID: 15325364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An fMRI study of the functional distinction of neuronal circuits at the sites on ventral visual stream co-activated by visual stimuli of different objects.
    Sung YW; Kamba M; Ogawa S
    Exp Brain Res; 2007 Aug; 181(4):657-63. PubMed ID: 17486323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses.
    Vaillancourt DE; Yu H; Mayka MA; Corcos DM
    Neuroimage; 2007 Jul; 36(3):793-803. PubMed ID: 17451971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic timescales across the basal ganglia.
    Nougaret S; Fascianelli V; Ravel S; Genovesio A
    Sci Rep; 2021 Nov; 11(1):21395. PubMed ID: 34725371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Information processing from the motor cortices to the subthalamic nucleus and globus pallidus and their somatotopic organizations revealed electrophysiologically in monkeys.
    Iwamuro H; Tachibana Y; Ugawa Y; Saito N; Nambu A
    Eur J Neurosci; 2017 Dec; 46(11):2684-2701. PubMed ID: 29044874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retinotopic effects during spatial audio-visual integration.
    Meienbrock A; Naumer MJ; Doehrmann O; Singer W; Muckli L
    Neuropsychologia; 2007 Feb; 45(3):531-9. PubMed ID: 16797610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.