These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 18287678)

  • 41. Axial stretch enhances sarcoplasmic reticulum Ca2+ leak and cellular Ca2+ reuptake in guinea pig ventricular myocytes: experiments and models.
    Iribe G; Kohl P
    Prog Biophys Mol Biol; 2008; 97(2-3):298-311. PubMed ID: 18395247
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Remodeling excitation-contraction coupling of hypertrophied ventricular myocytes is dependent on T-type calcium channels expression.
    Takebayashi S; Li Y; Kaku T; Inagaki S; Hashimoto Y; Kimura K; Miyamoto S; Hadama T; Ono K
    Biochem Biophys Res Commun; 2006 Jun; 345(2):766-73. PubMed ID: 16701562
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiphysics model of a rat ventricular myocyte: a voltage-clamp study.
    Krishna A; Valderrábano M; Palade PT; Clark WJ
    Theor Biol Med Model; 2012 Nov; 9():48. PubMed ID: 23171697
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Actions of emigrated neutrophils on Na(+) and K(+) currents in rat ventricular myocytes.
    Ward CA; Bazzazi H; Clark RB; Nygren A; Giles WR
    Prog Biophys Mol Biol; 2006; 90(1-3):249-69. PubMed ID: 16165196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isolation of Atrial and Ventricular Cardiomyocytes for In Vitro Studies.
    Plačkić J; Kockskämper J
    Methods Mol Biol; 2018; 1816():39-54. PubMed ID: 29987809
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Measuring single cardiac myocyte contractile force via moving a magnetic bead.
    Yin S; Zhang X; Zhan C; Wu J; Xu J; Cheung J
    Biophys J; 2005 Feb; 88(2):1489-95. PubMed ID: 15533919
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Droperidol inhibits intracellular Ca2+, myofilament Ca2+ sensitivity, and contraction in rat ventricular myocytes.
    Shiga T; Yong S; Carino J; Murray PA; Damron DS
    Anesthesiology; 2005 Jun; 102(6):1165-73. PubMed ID: 15915029
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Defective excitation-contraction coupling in hearts of rats with congestive heart failure.
    Sjaastad I; Birkeland JA; Ferrier G; Howlett S; Skomedal T; Bjørnerheim R; Wasserstrom JA; Sejersted OM
    Acta Physiol Scand; 2005 May; 184(1):45-58. PubMed ID: 15847643
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of age on cardiac excitation-contraction coupling.
    Fares E; Howlett SE
    Clin Exp Pharmacol Physiol; 2010 Jan; 37(1):1-7. PubMed ID: 19671063
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms underlying the frequency dependence of contraction and [Ca(2+)](i) transients in mouse ventricular myocytes.
    Antoons G; Mubagwa K; Nevelsteen I; Sipido KR
    J Physiol; 2002 Sep; 543(Pt 3):889-98. PubMed ID: 12231646
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cytosolic Ca2+ concentration and contraction-relaxation properties of ventricular myocytes from Escherichia coli endotoxemic guinea pigs: effect of fluid resuscitation.
    Zhong J; Adams HR; Rubin LJ
    Shock; 1997 May; 7(5):383-8. PubMed ID: 9165675
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NADPH oxidase-derived superoxide impairs calcium transients and contraction in aged murine ventricular myocytes.
    Rueckschloss U; Villmow M; Klöckner U
    Exp Gerontol; 2010 Oct; 45(10):788-96. PubMed ID: 20493939
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Simplified, Langendorff-Free Method for Concomitant Isolation of Viable Cardiac Myocytes and Nonmyocytes From the Adult Mouse Heart.
    Ackers-Johnson M; Li PY; Holmes AP; O'Brien SM; Pavlovic D; Foo RS
    Circ Res; 2016 Sep; 119(8):909-20. PubMed ID: 27502479
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Troglitazone attenuates high-glucose-induced abnormalities in relaxation and intracellular calcium in rat ventricular myocytes.
    Ren J; Dominguez LJ; Sowers JR; Davidoff AJ
    Diabetes; 1996 Dec; 45(12):1822-5. PubMed ID: 8922371
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of cardiac excitation-contraction coupling in isolated ventricular myocytes between rat and mouse.
    Hintz KK; Norby FL; Duan J; Cinnamon MA; Doze VA; Ren J
    Comp Biochem Physiol A Mol Integr Physiol; 2002 Sep; 133(1):191-8. PubMed ID: 12160885
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Voltage-dependence of contraction in streptozotocin-induced diabetic myocytes.
    Bracken NK; Woodall AJ; Howarth FC; Singh J
    Mol Cell Biochem; 2004 Jun; 261(1-2):235-43. PubMed ID: 15362509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intracellular Ca(2+) dynamics and sarcomere length in single ventricular myocytes.
    Powell T; Matsuoka S; Sarai N; Noma A
    Cell Calcium; 2004 Jun; 35(6):535-42. PubMed ID: 15110143
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stability of the contractile assembly and Ca2+-activated tension in adenovirus infected adult cardiac myocytes.
    Rust EM; Westfall MV; Metzger JM
    Mol Cell Biochem; 1998 Apr; 181(1-2):143-55. PubMed ID: 9562251
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effect of transmurally heterogeneous myocyte excitation-contraction coupling on canine left ventricular electromechanics.
    Campbell SG; Howard E; Aguado-Sierra J; Coppola BA; Omens JH; Mulligan LJ; McCulloch AD; Kerckhoffs RC
    Exp Physiol; 2009 May; 94(5):541-52. PubMed ID: 19251984
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Halothane alters contractility and Ca2+ transport in ventricular myocytes from streptozotocin-induced diabetic rats.
    Woodall A; Bracken N; Qureshi A; Howarth FC; Singh J
    Mol Cell Biochem; 2004 Jun; 261(1-2):251-61. PubMed ID: 15362511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.