These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18288256)

  • 1. Modern electrophysiological methods for brain-computer interfaces.
    Menendez RG; Noirhomme Q; Cincotti F; Mattia D; Aloise F; González Andino S
    Comput Intell Neurosci; 2007; 2007():56986. PubMed ID: 18288256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D hand motion trajectory prediction from EEG mu and beta bandpower.
    Korik A; Sosnik R; Siddique N; Coyle D
    Prog Brain Res; 2016; 228():71-105. PubMed ID: 27590966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing Prediction Model for a Noninvasive Brain-Computer Interface Platform Using Channel Selection, Classification, and Regression.
    Borhani S; Kilmarx J; Saffo D; Ng L; Abiri R; Zhao X
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2475-2482. PubMed ID: 30640636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ; Rosipal R; Matthews B
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun; 14(2):225-9. PubMed ID: 16792300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-trial EEG discrimination between wrist and finger movement imagery and execution in a sensorimotor BCI.
    Mohamed AK; Marwala T; John LR
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6289-93. PubMed ID: 22255776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single trial classification of motor imagination using 6 dry EEG electrodes.
    Popescu F; Fazli S; Badower Y; Blankertz B; Müller KR
    PLoS One; 2007 Jul; 2(7):e637. PubMed ID: 17653264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high performance sensorimotor beta rhythm-based brain-computer interface associated with human natural motor behavior.
    Bai O; Lin P; Vorbach S; Floeter MK; Hattori N; Hallett M
    J Neural Eng; 2008 Mar; 5(1):24-35. PubMed ID: 18310808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Brain-computer interface-based motor imagery training for patients with neurological movement disorders].
    Liburkina SP; Vasilyev AN; Kaplan AY; Ivanova GE; Chukanova AS
    Zh Nevrol Psikhiatr Im S S Korsakova; 2018; 118(9. Vyp. 2):63-68. PubMed ID: 30499562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of EEG modifications due to motor imagery for brain-computer interfaces.
    Cincotti F; Mattia D; Babiloni C; Carducci F; Salinari S; Bianchi L; Marciani MG; Babiloni F
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):131-3. PubMed ID: 12899254
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface.
    Hänselmann S; Schneiders M; Weidner N; Rupp R
    J Neuroeng Rehabil; 2015 Aug; 12():71. PubMed ID: 26303933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG oscillatory patterns and classification of sequential compound limb motor imagery.
    Yi W; Qiu S; Wang K; Qi H; He F; Zhou P; Zhang L; Ming D
    J Neuroeng Rehabil; 2016 Jan; 13():11. PubMed ID: 26822435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast attainment of computer cursor control with noninvasively acquired brain signals.
    Bradberry TJ; Gentili RJ; Contreras-Vidal JL
    J Neural Eng; 2011 Jun; 8(3):036010. PubMed ID: 21493978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of EEG activity into cursor movement by a brain-computer interface (BCI).
    Fabiani GE; McFarland DJ; Wolpaw JR; Pfurtscheller G
    IEEE Trans Neural Syst Rehabil Eng; 2004 Sep; 12(3):331-8. PubMed ID: 15473195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurophysiological predictors and spectro-spatial discriminative features for enhancing SMR-BCI.
    Robinson N; Thomas KP; Vinod AP
    J Neural Eng; 2018 Dec; 15(6):066032. PubMed ID: 30277219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-computer interface (BCI) operation: signal and noise during early training sessions.
    McFarland DJ; Sarnacki WA; Vaughan TM; Wolpaw JR
    Clin Neurophysiol; 2005 Jan; 116(1):56-62. PubMed ID: 15589184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhance decoding of pre-movement EEG patterns for brain-computer interfaces.
    Wang K; Xu M; Wang Y; Zhang S; Chen L; Ming D
    J Neural Eng; 2020 Jan; 17(1):016033. PubMed ID: 31747642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BCI Competition 2003--Data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements.
    Lemm S; Schäfer C; Curio G
    IEEE Trans Biomed Eng; 2004 Jun; 51(6):1077-80. PubMed ID: 15188882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of movement intention by spatially filtered electromagnetic inverse solutions.
    Congedo M; Lotte F; Lécuyer A
    Phys Med Biol; 2006 Apr; 51(8):1971-89. PubMed ID: 16585840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization of Slow Cortical Rhythms During Motor Imagery-Based Brain-Machine Interface Control.
    Barios JA; Ezquerro S; Bertomeu-Motos A; Nann M; Badesa FJ; Fernandez E; Soekadar SR; Garcia-Aracil N
    Int J Neural Syst; 2019 Jun; 29(5):1850045. PubMed ID: 30587046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.