BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 18288777)

  • 1. Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes.
    Gong M; Flachsbart BR; Shannon MA; Bohn PW; Sweedler JV
    Electrophoresis; 2008 Mar; 29(6):1237-44. PubMed ID: 18288777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrokinetic control of fluid transport in gold-coated nanocapillary array membranes in hybrid nanofluidic-microfluidic devices.
    Piruska A; Branagan SP; Minnis AB; Wang Z; Cropek DM; Sweedler JV; Bohn PW
    Lab Chip; 2010 May; 10(10):1237-44. PubMed ID: 20445875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and fabrication of a multilayered polymer microfluidic chip with nanofluidic interconnects via adhesive contact printing.
    Flachsbart BR; Wong K; Iannacone JM; Abante EN; Vlach RL; Rauchfuss PA; Bohn PW; Sweedler JV; Shannon MA
    Lab Chip; 2006 May; 6(5):667-74. PubMed ID: 16652183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling pH gradients across nanocapillary array membranes connecting microfluidic channels.
    Fa K; Tulock JJ; Sweedler JV; Bohn PW
    J Am Chem Soc; 2005 Oct; 127(40):13928-33. PubMed ID: 16201814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrokinetically driven fluidic transport in integrated three-dimensional microfluidic devices incorporating gold-coated nanocapillary array membranes.
    Piruska A; Branagan S; Cropek DM; Sweedler JV; Bohn PW
    Lab Chip; 2008 Oct; 8(10):1625-31. PubMed ID: 18813383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrifugal sedimentation for selectively packing channels with silica microbeads in three-dimensional micro/nanofluidic devices.
    Gong M; Bohn PW; Sweedler JV
    Anal Chem; 2009 Mar; 81(5):2022-6. PubMed ID: 19182940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microfluidic separation and gateable fraction collection for mass-limited samples.
    Tulock JJ; Shannon MA; Bohn PW; Sweedler JV
    Anal Chem; 2004 Nov; 76(21):6419-25. PubMed ID: 15516136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High performance microfluidic capillary electrophoresis devices.
    Fu LM; Leong JC; Lin CF; Tai CH; Tsai CH
    Biomed Microdevices; 2007 Jun; 9(3):405-12. PubMed ID: 17487587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips.
    Kelly RT; Li Y; Woolley AT
    Anal Chem; 2006 Apr; 78(8):2565-70. PubMed ID: 16615765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-changing sacrificial materials for solvent bonding of high-performance polymeric capillary electrophoresis microchips.
    Kelly RT; Pan T; Woolley AT
    Anal Chem; 2005 Jun; 77(11):3536-41. PubMed ID: 15924386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-charge induced ion depletion and sample stacking near single nanopores in microfluidic devices.
    Zhou K; Kovarik ML; Jacobson SC
    J Am Chem Soc; 2008 Jul; 130(27):8614-6. PubMed ID: 18549214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gateable nanofluidic interconnects for multilayered microfluidic separation systems.
    Kuo TC; Cannon DM; Chen Y; Tulock JJ; Shannon MA; Sweedler JV; Bohn PW
    Anal Chem; 2003 Apr; 75(8):1861-7. PubMed ID: 12713044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Replica multichannel polymer chips with a network of sacrificial channels sealed by adhesive printing method.
    Dang F; Shinohara S; Tabata O; Yamaoka Y; Kurokawa M; Shinohara Y; Ishikawa M; Baba Y
    Lab Chip; 2005 Apr; 5(4):472-8. PubMed ID: 15791347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modification of glycidyl-containing poly(methyl methacrylate) microchips using surface-initiated atom-transfer radical polymerization.
    Sun X; Liu J; Lee ML
    Anal Chem; 2008 Feb; 80(3):856-63. PubMed ID: 18179249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of nanoporous membranes for sample filtration/preconcentration in microchip electrophoresis.
    Long Z; Liu D; Ye N; Qin J; Lin B
    Electrophoresis; 2006 Dec; 27(24):4927-34. PubMed ID: 17117457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfabricated porous glass channels for electrokinetic separation devices.
    Cezar de Andrade Costa R; Mogensen KB; Kutter JP
    Lab Chip; 2005 Nov; 5(11):1310-4. PubMed ID: 16234957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface modification of polymer microfluidic devices using in-channel atom transfer radical polymerization.
    Sun X; Liu J; Lee ML
    Electrophoresis; 2008 Jul; 29(13):2760-7. PubMed ID: 18615784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional integrated microfluidic architectures enabled through electrically switchable nanocapillary array membranes.
    Gatimu EN; King TL; Sweedler JV; Bohn PW
    Biomicrofluidics; 2007 May; 1(2):21502. PubMed ID: 19693375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel electrophoretic analysis of segmented samples on chip for high-throughput determination of enzyme activities.
    Pei J; Nie J; Kennedy RT
    Anal Chem; 2010 Nov; 82(22):9261-7. PubMed ID: 20949899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective trapping and concentration of nanoparticles and viruses in dual-height nanofluidic channels.
    Hamblin MN; Xuan J; Maynes D; Tolley HD; Belnap DM; Woolley AT; Lee ML; Hawkins AR
    Lab Chip; 2010 Jan; 10(2):173-8. PubMed ID: 20066244
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.