BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 18288961)

  • 21. C-type lectins in immune defense against pathogens: the murine DC-SIGN homologue SIGNR3 confers early protection against Mycobacterium tuberculosis infection.
    Tanne A; Neyrolles O
    Virulence; 2010; 1(4):285-90. PubMed ID: 21178456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Collectin CL-LK Is a Novel Soluble Pattern Recognition Receptor for Mycobacterium tuberculosis.
    Troegeler A; Lugo-Villarino G; Hansen S; Rasolofo V; Henriksen ML; Mori K; Ohtani K; Duval C; Mercier I; Bénard A; Nigou J; Hudrisier D; Wakamiya N; Neyrolles O
    PLoS One; 2015; 10(7):e0132692. PubMed ID: 26173080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Mycobacterium tuberculosis cell-surface glycoprotein apa as a potential adhesin to colonize target cells via the innate immune system pulmonary C-type lectin surfactant protein A.
    Ragas A; Roussel L; Puzo G; Rivière M
    J Biol Chem; 2007 Feb; 282(8):5133-42. PubMed ID: 17158455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of inflammation and bacterial clearance by lung collectins.
    Sano H; Kuronuma K; Kudo K; Mitsuzawa H; Sato M; Murakami S; Kuroki Y
    Respirology; 2006 Jan; 11 Suppl():S46-50. PubMed ID: 16423271
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surfactant protein D binds to Mycobacterium tuberculosis bacilli and lipoarabinomannan via carbohydrate-lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages.
    Ferguson JS; Voelker DR; McCormack FX; Schlesinger LS
    J Immunol; 1999 Jul; 163(1):312-21. PubMed ID: 10384130
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs).
    Sato S; St-Pierre C; Bhaumik P; Nieminen J
    Immunol Rev; 2009 Jul; 230(1):172-87. PubMed ID: 19594636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus.
    Stamm CE; Collins AC; Shiloh MU
    Immunol Rev; 2015 Mar; 264(1):204-19. PubMed ID: 25703561
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting
    Velasquez LN; Stüve P; Gentilini MV; Swallow M; Bartel J; Lycke NY; Barkan D; Martina M; Lujan HD; Kalay H; van Kooyk Y; Sparwasser TD; Berod L
    Front Immunol; 2018; 9():471. PubMed ID: 29662482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Innate immune gene polymorphisms in tuberculosis.
    Azad AK; Sadee W; Schlesinger LS
    Infect Immun; 2012 Oct; 80(10):3343-59. PubMed ID: 22825450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recognition of Mycobacterial Lipids by Immune Receptors.
    Ishikawa E; Mori D; Yamasaki S
    Trends Immunol; 2017 Jan; 38(1):66-76. PubMed ID: 27889398
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An evolutionary perspective on C-type lectins in infection and immunity.
    van den Berg LM; Gringhuis SI; Geijtenbeek TB
    Ann N Y Acad Sci; 2012 Apr; 1253():149-58. PubMed ID: 22288724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria.
    Yonekawa A; Saijo S; Hoshino Y; Miyake Y; Ishikawa E; Suzukawa M; Inoue H; Tanaka M; Yoneyama M; Oh-Hora M; Akashi K; Yamasaki S
    Immunity; 2014 Sep; 41(3):402-413. PubMed ID: 25176311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Underwhelming or Misunderstood? Genetic Variability of Pattern Recognition Receptors in Immune Responses and Resistance to
    Dubé JY; Fava VM; Schurr E; Behr MA
    Front Immunol; 2021; 12():714808. PubMed ID: 34276708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Recognition of Cryptococcus neoformans by Pattern Recognition Receptors and its Role in Host Defense to This Infection].
    Sato K; Kawakami K
    Med Mycol J; 2017; 58(3):J83-J90. PubMed ID: 28855484
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction of mannose binding lectin and other pattern recognition receptors in human corneal epithelial cells during Aspergillus fumigatus infection.
    Peng X; Zhao G; Lin J; Li C
    Int Immunopharmacol; 2018 Oct; 63():161-169. PubMed ID: 30096599
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Recent progress in mycobacteriology].
    Okada M; Kobayashi K
    Kekkaku; 2007 Oct; 82(10):783-99. PubMed ID: 18018602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surfactant protein D inhibits mite-induced alveolar macrophage and dendritic cell activations through TLR signalling and DC-SIGN expression.
    Liu CF; Rivere M; Huang HJ; Puzo G; Wang JY
    Clin Exp Allergy; 2010 Jan; 40(1):111-22. PubMed ID: 20205699
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mycobacteria target DC-SIGN to suppress dendritic cell function.
    Geijtenbeek TB; Van Vliet SJ; Koppel EA; Sanchez-Hernandez M; Vandenbroucke-Grauls CM; Appelmelk B; Van Kooyk Y
    J Exp Med; 2003 Jan; 197(1):7-17. PubMed ID: 12515809
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Innate Immune Pattern Recognition Receptors of Mycobacterium tuberculosis: Nature and Consequences for Pathogenesis of Tuberculosis.
    Tsolaki AG; Varghese PM; Kishore U
    Adv Exp Med Biol; 2021; 1313():179-215. PubMed ID: 34661896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.