BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 18289004)

  • 1. Pathways of acetylcholine synthesis, transport and release as targets for treatment of adult-onset cognitive dysfunction.
    Amenta F; Tayebati SK
    Curr Med Chem; 2008; 15(5):488-98. PubMed ID: 18289004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Treatment of cognitive dysfunction associated with Alzheimer's disease with cholinergic precursors. Ineffective treatments or inappropriate approaches?
    Amenta F; Parnetti L; Gallai V; Wallin A
    Mech Ageing Dev; 2001 Nov; 122(16):2025-40. PubMed ID: 11589920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholinergic precursors in the treatment of cognitive impairment of vascular origin: ineffective approaches or need for re-evaluation?
    Parnetti L; Mignini F; Tomassoni D; Traini E; Amenta F
    J Neurol Sci; 2007 Jun; 257(1-2):264-9. PubMed ID: 17331541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of choline-containing phospholipids on brain cholinergic transporters in the rat.
    Tayebati SK; Tomassoni D; Di Stefano A; Sozio P; Cerasa LS; Amenta F
    J Neurol Sci; 2011 Mar; 302(1-2):49-57. PubMed ID: 21195433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of cholinergic enhancing drugs on cholinergic transporters in the brain and peripheral blood lymphocytes of spontaneously hypertensive rats.
    Tomassoni D; Catalani A; Cinque C; Di Tullio MA; Tayebati SK; Cadoni A; Nwankwo IE; Traini E; Amenta F
    Curr Alzheimer Res; 2012 Jan; 9(1):120-7. PubMed ID: 22191561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of radiolabeled acetylcholine synthesis and release in rat striatum.
    Muramatsu I; Uwada J; Chihara K; Sada K; Wang MH; Yazawa T; Taniguchi T; Ishibashi T; Masuoka T
    J Neurochem; 2022 Feb; 160(3):342-355. PubMed ID: 34878648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Choline alphoscerate (alpha-glyceryl-phosphoryl-choline) an old choline- containing phospholipid with a still interesting profile as cognition enhancing agent.
    Traini E; Bramanti V; Amenta F
    Curr Alzheimer Res; 2013 Dec; 10(10):1070-9. PubMed ID: 24156263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Regulation of acetylcholine synthesis in presynaptic endings of cholinergic neurons of the central nervous system].
    Tuchek S; Dolezhal V; Richny Ia
    Neirofiziologiia; 1984; 16(5):603-11. PubMed ID: 6151119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatidylcholine as a precursor of choline for acetylcholine synthesis.
    Blusztajn JK; Liscovitch M; Mauron C; Richardson UI; Wurtman RJ
    J Neural Transm Suppl; 1987; 24():247-59. PubMed ID: 3316498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The synthesis, turnover and release of surplus acetylcholine in a sympathetic ganglion.
    Collier B; Katz HS
    J Physiol; 1971 May; 214(3):537-52. PubMed ID: 4325622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetylcholine release from the central nervous system: a 50-year retrospective.
    Phillis JW
    Crit Rev Neurobiol; 2005; 17(3-4):161-217. PubMed ID: 17341198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sympathetic neurons expressing cholinergic properties are poised to allocate choline symmetrically between acetylcholine and the phosphatidylcholine-generating pathway in growing neurites.
    Suidan HS; Tolkovsky AM
    J Neurosci; 1993 Mar; 13(3):1190-201. PubMed ID: 8441007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence to suggest that extracellular acetate is accumulated by rat hippocampal cholinergic nerve terminals for acetylcholine formation and release.
    Carroll PT
    Brain Res; 1997 Apr; 753(1):47-55. PubMed ID: 9125430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of synaptic acetylcholine concentrations by acetylcholine transport in rat striatal cholinergic transmission.
    Muramatsu I; Uwada J; Masuoka T; Yoshiki H; Sada K; Lee KS; Nishio M; Ishibashi T; Taniguchi T
    J Neurochem; 2017 Oct; 143(1):76-86. PubMed ID: 28700094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choline-containing phospholipids: relevance to brain functional pathways.
    Tayebati SK; Amenta F
    Clin Chem Lab Med; 2013 Mar; 51(3):513-21. PubMed ID: 23314552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disrupted Choline Clearance and Sustained Acetylcholine Release
    Donovan E; Avila C; Klausner S; Parikh V; Fenollar-Ferrer C; Blakely RD; Sarter M
    J Neurosci; 2022 Apr; 42(16):3426-3444. PubMed ID: 35232764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential impact of genetically modulated choline transporter expression on the release of endogenous versus newly synthesized acetylcholine.
    Iwamoto H; Calcutt MW; Blakely RD
    Neurochem Int; 2016 Sep; 98():138-45. PubMed ID: 27013347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Choline production from choline-containing phospholipids: a hypothetical role in Alzheimer's disease and aging.
    Maire JC; Wurtman RJ
    Prog Neuropsychopharmacol Biol Psychiatry; 1984; 8(4-6):637-42. PubMed ID: 6543397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association with the cholinergic precursor choline alphoscerate and the cholinesterase inhibitor rivastigmine: an approach for enhancing cholinergic neurotransmission.
    Amenta F; Tayebati SK; Vitali D; Di Tullio MA
    Mech Ageing Dev; 2006 Feb; 127(2):173-9. PubMed ID: 16297435
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.