These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 18289499)
1. Survival and flowering of hybrids between cultivated and wild carrots (Daucus carota) in Danish grasslands. Hauser TP; Shim SI Environ Biosafety Res; 2007; 6(4):237-47. PubMed ID: 18289499 [TBL] [Abstract][Full Text] [Related]
2. Hybrids between cultivated and wild carrots in natural populations in Denmark. Magnussen LS; Hauser TP Heredity (Edinb); 2007 Aug; 99(2):185-92. PubMed ID: 17473862 [TBL] [Abstract][Full Text] [Related]
3. Morphological markers for the detection of introgression from cultivated into wild carrot (Daucus carota L.) reveal dominant domestication traits. Grebenstein C; Kos SP; de Jong TJ; Tamis WL; de Snoo GR Plant Biol (Stuttg); 2013 May; 15(3):531-40. PubMed ID: 23173917 [TBL] [Abstract][Full Text] [Related]
4. Effects of competition on the fitness of wild and crop-wild hybrid sunflower from a diversity of wild populations and crop lines. Mercer KL; Wyse DL; Shaw RG Evolution; 2006 Oct; 60(10):2044-55. PubMed ID: 17133861 [TBL] [Abstract][Full Text] [Related]
5. Shared flowering phenology, insect pests, and pathogens among wild, weedy, and cultivated rice in the Mekong Delta, Vietnam: implications for transgenic rice. Cohen MB; Arpaia S; Lan LP; Chau LM; Snow AA Environ Biosafety Res; 2008; 7(2):73-85. PubMed ID: 18549769 [TBL] [Abstract][Full Text] [Related]
6. Introgression and persistence of cultivar alleles in wild carrot (Daucus carota) populations in the United States. Hernández F; Palmieri L; Brunet J Am J Bot; 2023 Nov; 110(11):e16242. PubMed ID: 37681637 [TBL] [Abstract][Full Text] [Related]
7. Plant fitness assessment for wild relatives of insect resistant crops. Letourneau DK; Hagen JA Environ Biosafety Res; 2009; 8(1):45-55. PubMed ID: 19419653 [TBL] [Abstract][Full Text] [Related]
8. Pollen-mediated gene flow from wild carrots (Daucus carota L. subsp. carota) affects the production of commercial carrot seeds (Daucus carota L. subsp. sativus) internationally and in New Zealand in the context of climate change: A systematic review. Godwin A; Pieralli S; Sofkova-Bobcheva S; Ward A; McGill C Sci Total Environ; 2024 Jul; 933():173269. PubMed ID: 38754518 [TBL] [Abstract][Full Text] [Related]
9. An eco-metabolomic study of host plant resistance to Western flower thrips in cultivated, biofortified and wild carrots. Leiss KA; Cristofori G; van Steenis R; Verpoorte R; Klinkhamer PG Phytochemistry; 2013 Sep; 93():63-70. PubMed ID: 23583013 [TBL] [Abstract][Full Text] [Related]
10. Metabolic fingerprinting reveals differences between shoots of wild and cultivated carrot (Daucus carota L.) and suggests maternal inheritance or wild trait dominance in hybrids. Grebenstein C; Choi YH; Rong J; de Jong TJ; Tamis WL Phytochemistry; 2011 Aug; 72(11-12):1341-7. PubMed ID: 21601898 [TBL] [Abstract][Full Text] [Related]
11. Genetic structure and domestication of carrot (Daucus carota subsp. sativus) (Apiaceae). Iorizzo M; Senalik DA; Ellison SL; Grzebelus D; Cavagnaro PF; Allender C; Brunet J; Spooner DM; Van Deynze A; Simon PW Am J Bot; 2013 May; 100(5):930-8. PubMed ID: 23594914 [TBL] [Abstract][Full Text] [Related]
12. Persistence of sunflower crop traits and fitness in Helianthus petiolaris populations. Gutierrez A; Cantamutto M; Poverene M Plant Biol (Stuttg); 2011 Sep; 13(5):821-30. PubMed ID: 21815987 [TBL] [Abstract][Full Text] [Related]
13. The origin and fate of morphological intermediates between wild and cultivated soybeans in their natural habitats in Japan. Kuroda Y; Kaga A; Tomooka N; Vaughan D Mol Ecol; 2010 Jun; 19(11):2346-60. PubMed ID: 20444080 [TBL] [Abstract][Full Text] [Related]
14. Genealogy, morphology and fitness of spontaneous hybrids between wild and cultivated chicory (Cichorium intybus). Kiaer LP; Philipp M; Jørgensen RB; Hauser TP Heredity (Edinb); 2007 Jul; 99(1):112-20. PubMed ID: 17473868 [TBL] [Abstract][Full Text] [Related]
15. Characterising genes associated with flowering time in carrot (Daucus carota L.) using transcriptome analysis. Ou CG; Mao JH; Liu LJ; Li CJ; Ren HF; Zhao ZW; Zhuang FY Plant Biol (Stuttg); 2017 Mar; 19(2):286-297. PubMed ID: 27775866 [TBL] [Abstract][Full Text] [Related]
16. Gene flow from weedy red rice (Oryza sativa L.) to cultivated rice and fitness of hybrids. Shivrain VK; Burgos NR; Gealy DR; Sales MA; Smith KL Pest Manag Sci; 2009 Oct; 65(10):1124-9. PubMed ID: 19530257 [TBL] [Abstract][Full Text] [Related]
17. Impact of interspecific hybridization between crops and weedy relatives on the evolution of flowering time in weedy phenotypes. Vacher C; Kossler TM; Hochberg ME; Weis AE PLoS One; 2011 Feb; 6(2):e14649. PubMed ID: 21304909 [TBL] [Abstract][Full Text] [Related]
18. Weed evolution after crop gene introgression: greater survival and fecundity of hybrids in a new environment. Campbell LG; Snow AA; Ridley CE Ecol Lett; 2006 Nov; 9(11):1198-209. PubMed ID: 17040322 [TBL] [Abstract][Full Text] [Related]
19. Fecundity, phenology, and seed dormancy of F1 wild-crop hybrids in Sunflower (Helianthus annuus, Asteraceae). Snow A; Moran-Palma P; Rieseberg L; Wszelaki A; Seiler G Am J Bot; 1998 Jun; 85(6):794. PubMed ID: 21684963 [TBL] [Abstract][Full Text] [Related]
20. Natural hybridization between a clonally propagated crop, cassava (Manihot esculenta Crantz) and a wild relative in French Guiana. Duputié A; David P; Debain C; McKey D Mol Ecol; 2007 Jul; 16(14):3025-38. PubMed ID: 17614915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]