These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2264 related articles for article (PubMed ID: 18289664)
1. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold. Valarmathi MT; Yost MJ; Goodwin RL; Potts JD Biomaterials; 2008 May; 29(14):2203-16. PubMed ID: 18289664 [TBL] [Abstract][Full Text] [Related]
2. Concurrent differentiation of marrow stromal cells to osteogenic and vasculogenic lineages. Henderson JA; He X; Jabbari E Macromol Biosci; 2008 Jun; 8(6):499-507. PubMed ID: 17941111 [TBL] [Abstract][Full Text] [Related]
3. A three-dimensional tubular scaffold that modulates the osteogenic and vasculogenic differentiation of rat bone marrow stromal cells. Valarmathi MT; Yost MJ; Goodwin RL; Potts JD Tissue Eng Part A; 2008 Apr; 14(4):491-504. PubMed ID: 18352828 [TBL] [Abstract][Full Text] [Related]
4. A three-dimensional model of vasculogenesis. Valarmathi MT; Davis JM; Yost MJ; Goodwin RL; Potts JD Biomaterials; 2009 Feb; 30(6):1098-112. PubMed ID: 19027154 [TBL] [Abstract][Full Text] [Related]
5. In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Mauney JR; Jaquiéry C; Volloch V; Heberer M; Martin I; Kaplan DL Biomaterials; 2005 Jun; 26(16):3173-85. PubMed ID: 15603812 [TBL] [Abstract][Full Text] [Related]
6. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix. Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT Spine J; 2006; 6(6):615-23. PubMed ID: 17088192 [TBL] [Abstract][Full Text] [Related]
7. The promotion of osteoblastic differentiation of rat bone marrow stromal cells by a polyvalent plant mosaic virus. Kaur G; Valarmathi MT; Potts JD; Wang Q Biomaterials; 2008 Oct; 29(30):4074-81. PubMed ID: 18649940 [TBL] [Abstract][Full Text] [Related]
8. The role of BMP-7 in chondrogenic and osteogenic differentiation of human bone marrow multipotent mesenchymal stromal cells in vitro. Shen B; Wei A; Whittaker S; Williams LA; Tao H; Ma DD; Diwan AD J Cell Biochem; 2010 Feb; 109(2):406-16. PubMed ID: 19950204 [TBL] [Abstract][Full Text] [Related]
9. Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Hayashi O; Katsube Y; Hirose M; Ohgushi H; Ito H Calcif Tissue Int; 2008 Mar; 82(3):238-47. PubMed ID: 18305886 [TBL] [Abstract][Full Text] [Related]
10. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Mauney JR; Sjostorm S; Blumberg J; Horan R; O'Leary JP; Vunjak-Novakovic G; Volloch V; Kaplan DL Calcif Tissue Int; 2004 May; 74(5):458-68. PubMed ID: 14961210 [TBL] [Abstract][Full Text] [Related]
11. Pre-culture period of mesenchymal stem cells in osteogenic media influences their in vivo bone forming potential. Castano-Izquierdo H; Alvarez-Barreto J; van den Dolder J; Jansen JA; Mikos AG; Sikavitsas VI J Biomed Mater Res A; 2007 Jul; 82(1):129-38. PubMed ID: 17269144 [TBL] [Abstract][Full Text] [Related]
12. [Potential of chondrogenesis of bone marrow stromal cells co-cultured with chondrocytes on biodegradable scaffold: in vivo experiment with pigs and mice]. Liu X; Zhou GD; Lü XJ; Liu TY; Zhang WJ; Liu W; Cao YL Zhonghua Yi Xue Za Zhi; 2007 Jul; 87(27):1929-33. PubMed ID: 17923021 [TBL] [Abstract][Full Text] [Related]
13. Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Zhang W; Walboomers XF; van Osch GJ; van den Dolder J; Jansen JA Tissue Eng Part A; 2008 Feb; 14(2):285-94. PubMed ID: 18333781 [TBL] [Abstract][Full Text] [Related]
14. Mesenchymal stem cells cultured on a collagen scaffold: In vitro osteogenic differentiation. Donzelli E; Salvadè A; Mimo P; Viganò M; Morrone M; Papagna R; Carini F; Zaopo A; Miloso M; Baldoni M; Tredici G Arch Oral Biol; 2007 Jan; 52(1):64-73. PubMed ID: 17049335 [TBL] [Abstract][Full Text] [Related]
15. Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Datta N; Holtorf HL; Sikavitsas VI; Jansen JA; Mikos AG Biomaterials; 2005 Mar; 26(9):971-7. PubMed ID: 15369685 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of partially demineralized osteoporotic cancellous bone matrix combined with human bone marrow stromal cells for tissue engineering: an in vitro and in vivo study. Liu G; Sun J; Li Y; Zhou H; Cui L; Liu W; Cao Y Calcif Tissue Int; 2008 Sep; 83(3):176-85. PubMed ID: 18704250 [TBL] [Abstract][Full Text] [Related]
17. Molecular and functional expression of voltage-operated calcium channels during osteogenic differentiation of human mesenchymal stem cells. Zahanich I; Graf EM; Heubach JF; Hempel U; Boxberger S; Ravens U J Bone Miner Res; 2005 Sep; 20(9):1637-46. PubMed ID: 16059635 [TBL] [Abstract][Full Text] [Related]
18. Growth of mesenchymal stem cells on electrospun type I collagen nanofibers. Shih YR; Chen CN; Tsai SW; Wang YJ; Lee OK Stem Cells; 2006 Nov; 24(11):2391-7. PubMed ID: 17071856 [TBL] [Abstract][Full Text] [Related]
19. A minimal common osteochondrocytic differentiation medium for the osteogenic and chondrogenic differentiation of bone marrow stromal cells in the construction of osteochondral graft. Li J; Mareddy S; Tan DM; Crawford R; Long X; Miao X; Xiao Y Tissue Eng Part A; 2009 Sep; 15(9):2481-90. PubMed ID: 19327021 [TBL] [Abstract][Full Text] [Related]
20. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Schantz JT; Teoh SH; Lim TC; Endres M; Lam CX; Hutmacher DW Tissue Eng; 2003; 9 Suppl 1():S113-26. PubMed ID: 14511475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]