These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Stabilization of mercury-containing wastes using sulfide. Piao H; Bishop PL Environ Pollut; 2006 Feb; 139(3):498-506. PubMed ID: 16099084 [TBL] [Abstract][Full Text] [Related]
5. Stabilization/solidification of mercury-contaminated waste ash using calcium sodium phosphate (CNP) and magnesium potassium phosphate (MKP) processes. Cho JH; Eom Y; Lee TG J Hazard Mater; 2014 Aug; 278():474-82. PubMed ID: 24997263 [TBL] [Abstract][Full Text] [Related]
6. Concerns on liquid mercury and mercury-containing wastes: a review of the treatment technologies for the safe storage. Rodríguez O; Padilla I; Tayibi H; López-Delgado A J Environ Manage; 2012 Jun; 101():197-205. PubMed ID: 22446074 [TBL] [Abstract][Full Text] [Related]
7. Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag--An overview. Song HW; Saraswathy V J Hazard Mater; 2006 Nov; 138(2):226-33. PubMed ID: 16930831 [TBL] [Abstract][Full Text] [Related]
8. Use of sulfoaluminate cement and bottom ash in the solidification/stabilization of galvanic sludge. Luz CA; Rocha JC; Cheriaf M; Pera J J Hazard Mater; 2006 Aug; 136(3):837-45. PubMed ID: 16488079 [TBL] [Abstract][Full Text] [Related]
9. Advances in encapsulation technologies for the management of mercury-contaminated hazardous wastes. Randall P; Chattopadhyay S J Hazard Mater; 2004 Oct; 114(1-3):211-23. PubMed ID: 15511593 [TBL] [Abstract][Full Text] [Related]
10. Sulfur speciation in untreated and alkali treated ground-granulated blast furnace slag. Arai Y; Powell BA; Kaplan DI Sci Total Environ; 2017 Jul; 589():117-121. PubMed ID: 28273594 [TBL] [Abstract][Full Text] [Related]
11. Leaching of mercury-containing cement monoliths aged for one year. Svensson M; Allard B Waste Manag; 2008; 28(3):597-603. PubMed ID: 17544639 [TBL] [Abstract][Full Text] [Related]
12. Stabilization and solidification of metal-laden wastes by compaction and magnesium phosphate-based binder. Rao AJ; Pagilla KR; Wagh AS J Air Waste Manag Assoc; 2000 Sep; 50(9):1623-31. PubMed ID: 11055158 [TBL] [Abstract][Full Text] [Related]
13. An approach for phosphate removal with quartz sand, ceramsite, blast furnace slag and steel slag as seed crystal. Qiu L; Wang G; Zhang S; Yang Z; Li Y Water Sci Technol; 2012; 65(6):1048-53. PubMed ID: 22378001 [TBL] [Abstract][Full Text] [Related]
15. Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites. Giergiczny Z; Król A J Hazard Mater; 2008 Dec; 160(2-3):247-55. PubMed ID: 18423859 [TBL] [Abstract][Full Text] [Related]
16. Stabilization of chloro-organics using organophilic bentonite in a cement-blast furnace slag matrix. Cioffi R; Maffucci L; Santoro L; Glasser FP Waste Manag; 2001; 21(7):651-60. PubMed ID: 11530921 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of Strength Development in Concrete with Ground Granulated Blast Furnace Slag Using Apparent Activation Energy. Yang HM; Kwon SJ; Myung NV; Singh JK; Lee HS; Mandal S Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963399 [TBL] [Abstract][Full Text] [Related]
18. Strength Development and Hydration Behavior of Self-Activation of Commercial Ground Granulated Blast-Furnace Slag Mixed with Purified Water. Park H; Jeong Y; Jeong JH; Oh JE Materials (Basel); 2016 Mar; 9(3):. PubMed ID: 28773312 [TBL] [Abstract][Full Text] [Related]
19. Properties of mortars made by uncalcined FGD gypsum-fly ash-ground granulated blast furnace slag composite binder. Zhong S; Ni K; Li J Waste Manag; 2012 Jul; 32(7):1468-72. PubMed ID: 22440404 [TBL] [Abstract][Full Text] [Related]
20. Geopolymer Based on Mechanically Activated Air-cooled Blast Furnace Slag. Tole I; Rajczakowska M; Humad A; Kothari A; Cwirzen A Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32143319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]