These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 18289919)
1. Clostridium difficile toxins: more than mere inhibitors of Rho proteins. Genth H; Dreger SC; Huelsenbeck J; Just I Int J Biochem Cell Biol; 2008; 40(4):592-7. PubMed ID: 18289919 [TBL] [Abstract][Full Text] [Related]
2. Clostridium difficile toxin A-induced apoptosis is p53-independent but depends on glucosylation of Rho GTPases. Nottrott S; Schoentaube J; Genth H; Just I; Gerhard R Apoptosis; 2007 Aug; 12(8):1443-53. PubMed ID: 17437185 [TBL] [Abstract][Full Text] [Related]
3. Upregulation of the immediate early gene product RhoB by exoenzyme C3 from Clostridium limosum and toxin B from Clostridium difficile. Huelsenbeck J; Dreger SC; Gerhard R; Fritz G; Just I; Genth H Biochemistry; 2007 Apr; 46(16):4923-31. PubMed ID: 17397186 [TBL] [Abstract][Full Text] [Related]
4. Substrate specificity of clostridial glucosylating toxins and their function on colonocytes analyzed by proteomics techniques. Zeiser J; Gerhard R; Just I; Pich A J Proteome Res; 2013 Apr; 12(4):1604-18. PubMed ID: 23387933 [TBL] [Abstract][Full Text] [Related]
5. Molecular methods to study transcriptional regulation of Clostridium difficile toxin genes. Antunes A; Dupuy B Methods Mol Biol; 2010; 646():93-115. PubMed ID: 20597005 [TBL] [Abstract][Full Text] [Related]
6. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Jank T; Aktories K Trends Microbiol; 2008 May; 16(5):222-9. PubMed ID: 18394902 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of cytokinesis by Clostridium difficile toxin B and cytotoxic necrotizing factors--reinforcing the critical role of RhoA in cytokinesis. Huelsenbeck SC; May M; Schmidt G; Genth H Cell Motil Cytoskeleton; 2009 Nov; 66(11):967-75. PubMed ID: 19504561 [TBL] [Abstract][Full Text] [Related]
9. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Jank T; Giesemann T; Aktories K Glycobiology; 2007 Apr; 17(4):15R-22R. PubMed ID: 17237138 [TBL] [Abstract][Full Text] [Related]
10. Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. Dingle T; Wee S; Mulvey GL; Greco A; Kitova EN; Sun J; Lin S; Klassen JS; Palcic MM; Ng KK; Armstrong GD Glycobiology; 2008 Sep; 18(9):698-706. PubMed ID: 18509107 [TBL] [Abstract][Full Text] [Related]
11. Cellular stability of Rho-GTPases glucosylated by Clostridium difficile toxin B. Genth H; Huelsenbeck J; Hartmann B; Hofmann F; Just I; Gerhard R FEBS Lett; 2006 Jun; 580(14):3565-9. PubMed ID: 16730714 [TBL] [Abstract][Full Text] [Related]
12. Serine-71 phosphorylation of Rac1/Cdc42 diminishes the pathogenic effect of Clostridium difficile toxin A. Schoentaube J; Olling A; Tatge H; Just I; Gerhard R Cell Microbiol; 2009 Dec; 11(12):1816-26. PubMed ID: 19709124 [TBL] [Abstract][Full Text] [Related]
13. Bacterial protein toxins inhibiting low-molecular-mass GTP-binding proteins. Just I; Hofmann F; Genth H; Gerhard R Int J Med Microbiol; 2001 Sep; 291(4):243-50. PubMed ID: 11680784 [TBL] [Abstract][Full Text] [Related]
14. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile. Just I; Selzer J; von Eichel-Streiber C; Aktories K J Clin Invest; 1995 Mar; 95(3):1026-31. PubMed ID: 7883950 [TBL] [Abstract][Full Text] [Related]
16. Clinically important interaction between statin drugs and Clostridium difficile toxin? McGuire T; Dobesh P; Klepser D; Rupp M; Olsen K Med Hypotheses; 2009 Dec; 73(6):1045-7. PubMed ID: 19656639 [TBL] [Abstract][Full Text] [Related]
17. Activation of MMP-2 by Clostridium difficile toxin B in bovine smooth muscle cells. Koike T; Kuzuya M; Asai T; Kanda S; Cheng XW; Watanabe K; Banno Y; Nozawa Y; Iguchi A Biochem Biophys Res Commun; 2000 Oct; 277(1):43-6. PubMed ID: 11027636 [TBL] [Abstract][Full Text] [Related]
18. Clostridium difficile toxins: mechanism of action and role in disease. Voth DE; Ballard JD Clin Microbiol Rev; 2005 Apr; 18(2):247-63. PubMed ID: 15831824 [TBL] [Abstract][Full Text] [Related]
19. Development of a non-radiolabeled glucosyltransferase activity assay for C. difficile toxin A and B using ultra performance liquid chromatography. Loughney JW; Lancaster C; Price CE; Hoang VM; Ha S; Rustandi RR J Chromatogr A; 2017 May; 1498():169-175. PubMed ID: 28238427 [TBL] [Abstract][Full Text] [Related]
20. Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene. Olling A; Seehase S; Minton NP; Tatge H; Schröter S; Kohlscheen S; Pich A; Just I; Gerhard R Microb Pathog; 2012 Jan; 52(1):92-100. PubMed ID: 22107906 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]