BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 18289919)

  • 1. Clostridium difficile toxins: more than mere inhibitors of Rho proteins.
    Genth H; Dreger SC; Huelsenbeck J; Just I
    Int J Biochem Cell Biol; 2008; 40(4):592-7. PubMed ID: 18289919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clostridium difficile toxin A-induced apoptosis is p53-independent but depends on glucosylation of Rho GTPases.
    Nottrott S; Schoentaube J; Genth H; Just I; Gerhard R
    Apoptosis; 2007 Aug; 12(8):1443-53. PubMed ID: 17437185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upregulation of the immediate early gene product RhoB by exoenzyme C3 from Clostridium limosum and toxin B from Clostridium difficile.
    Huelsenbeck J; Dreger SC; Gerhard R; Fritz G; Just I; Genth H
    Biochemistry; 2007 Apr; 46(16):4923-31. PubMed ID: 17397186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity of clostridial glucosylating toxins and their function on colonocytes analyzed by proteomics techniques.
    Zeiser J; Gerhard R; Just I; Pich A
    J Proteome Res; 2013 Apr; 12(4):1604-18. PubMed ID: 23387933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular methods to study transcriptional regulation of Clostridium difficile toxin genes.
    Antunes A; Dupuy B
    Methods Mol Biol; 2010; 646():93-115. PubMed ID: 20597005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mode of action of clostridial glucosylating toxins: the ABCD model.
    Jank T; Aktories K
    Trends Microbiol; 2008 May; 16(5):222-9. PubMed ID: 18394902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of cytokinesis by Clostridium difficile toxin B and cytotoxic necrotizing factors--reinforcing the critical role of RhoA in cytokinesis.
    Huelsenbeck SC; May M; Schmidt G; Genth H
    Cell Motil Cytoskeleton; 2009 Nov; 66(11):967-75. PubMed ID: 19504561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clostridium difficile toxins attack Rho.
    Wilkins TD; Lyerly DM
    Trends Microbiol; 1996 Feb; 4(2):49-51. PubMed ID: 8820565
    [No Abstract]   [Full Text] [Related]  

  • 9. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function.
    Jank T; Giesemann T; Aktories K
    Glycobiology; 2007 Apr; 17(4):15R-22R. PubMed ID: 17237138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile.
    Dingle T; Wee S; Mulvey GL; Greco A; Kitova EN; Sun J; Lin S; Klassen JS; Palcic MM; Ng KK; Armstrong GD
    Glycobiology; 2008 Sep; 18(9):698-706. PubMed ID: 18509107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular stability of Rho-GTPases glucosylated by Clostridium difficile toxin B.
    Genth H; Huelsenbeck J; Hartmann B; Hofmann F; Just I; Gerhard R
    FEBS Lett; 2006 Jun; 580(14):3565-9. PubMed ID: 16730714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serine-71 phosphorylation of Rac1/Cdc42 diminishes the pathogenic effect of Clostridium difficile toxin A.
    Schoentaube J; Olling A; Tatge H; Just I; Gerhard R
    Cell Microbiol; 2009 Dec; 11(12):1816-26. PubMed ID: 19709124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial protein toxins inhibiting low-molecular-mass GTP-binding proteins.
    Just I; Hofmann F; Genth H; Gerhard R
    Int J Med Microbiol; 2001 Sep; 291(4):243-50. PubMed ID: 11680784
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The low molecular mass GTP-binding protein Rho is affected by toxin A from Clostridium difficile.
    Just I; Selzer J; von Eichel-Streiber C; Aktories K
    J Clin Invest; 1995 Mar; 95(3):1026-31. PubMed ID: 7883950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clostridium difficile Toxin Biology.
    Aktories K; Schwan C; Jank T
    Annu Rev Microbiol; 2017 Sep; 71():281-307. PubMed ID: 28657883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinically important interaction between statin drugs and Clostridium difficile toxin?
    McGuire T; Dobesh P; Klepser D; Rupp M; Olsen K
    Med Hypotheses; 2009 Dec; 73(6):1045-7. PubMed ID: 19656639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of MMP-2 by Clostridium difficile toxin B in bovine smooth muscle cells.
    Koike T; Kuzuya M; Asai T; Kanda S; Cheng XW; Watanabe K; Banno Y; Nozawa Y; Iguchi A
    Biochem Biophys Res Commun; 2000 Oct; 277(1):43-6. PubMed ID: 11027636
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clostridium difficile toxins: mechanism of action and role in disease.
    Voth DE; Ballard JD
    Clin Microbiol Rev; 2005 Apr; 18(2):247-63. PubMed ID: 15831824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a non-radiolabeled glucosyltransferase activity assay for C. difficile toxin A and B using ultra performance liquid chromatography.
    Loughney JW; Lancaster C; Price CE; Hoang VM; Ha S; Rustandi RR
    J Chromatogr A; 2017 May; 1498():169-175. PubMed ID: 28238427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Release of TcdA and TcdB from Clostridium difficile cdi 630 is not affected by functional inactivation of the tcdE gene.
    Olling A; Seehase S; Minton NP; Tatge H; Schröter S; Kohlscheen S; Pich A; Just I; Gerhard R
    Microb Pathog; 2012 Jan; 52(1):92-100. PubMed ID: 22107906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.