These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18290135)

  • 1. Hydrophone measurements in diagnostic ultrasound fields.
    Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):87-101. PubMed ID: 18290135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of piezoelectric PVDF on medical ultrasound exposure measurements, standards, and regulations.
    Harris GR; Preston RC; Dereggi AS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1321-35. PubMed ID: 18238678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones.
    Beard PC; Hurrell AM; Mills TN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):256-64. PubMed ID: 18238538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-delay spectrometry measurement of magnitude and phase of hydrophone response.
    Wear KA; Gammell PM; Maruvada S; Liu Y; Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2325-33. PubMed ID: 22083766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-dimensional hydrophone array using piezoelectric PVDF.
    Hurrell A; Duck F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1345-53. PubMed ID: 18238680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wide-band piezoelectric polymer acoustic sources.
    Lewin PA; Schafer ME
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):175-85. PubMed ID: 18290144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling of anomalies due to hydrophones in continuous-wave ultrasound fields.
    Huttunen T; Kaipio JP; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1486-500. PubMed ID: 14682632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computerized system for measuring the acoustic output from diagnostic ultrasound equipment.
    Schafer ME; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):102-9. PubMed ID: 18290136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz.
    Lewin PA; Mu C; Umchid S; Daryoush A; El-Sherif M
    Ultrasonics; 2005 Dec; 43(10):815-21. PubMed ID: 16054665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative evaluation of three hydrophones and a numerical model in high intensity focused ultrasound fields.
    Haller J; Jenderka KV; Durando G; Shaw A
    J Acoust Soc Am; 2012 Feb; 131(2):1121-30. PubMed ID: 22352487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a PVDF membrane hydrophone for use in air-coupled ultrasonic transducer calibration.
    Galbraith W; Hayward G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1549-58. PubMed ID: 18250002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane hydrophone phase characteristics through nonlinear acoustics measurements.
    Bloomfield PE; Gandhi G; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2418-37. PubMed ID: 22083775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are hydrophones of diameter 0.5 mm small enough to characterise diagnostic ultrasound equipment?
    Smith RA
    Phys Med Biol; 1989 Nov; 34(11):1593-607. PubMed ID: 2685834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1-60 MHz measurements in focused acoustic fields using spatial averaging corrections.
    Radulescu EG; Lewin PA; Nowicki A
    Ultrasonics; 2002 May; 40(1-8):497-501. PubMed ID: 12159990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interlaboratory evaluation of hydrophone sensitivity calibration from 0.1 to 2 MHz via time delay spectrometry.
    Harris GR; Gammell PM; Lewin PA; Radulescu EG
    Ultrasonics; 2004 Apr; 42(1-9):349-53. PubMed ID: 15047310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of the effects of hydrophone and amplifier frequency response on ultrasound exposure measurements.
    Harris GR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(5):413-7. PubMed ID: 18267602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of nonlinear fields on miniature hydrophone calibration using the planar scanning technique.
    Corbett SS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):162-7. PubMed ID: 18290142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Fabry-Perot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure.
    Morris P; Hurrell A; Shaw A; Zhang E; Beard P
    J Acoust Soc Am; 2009 Jun; 125(6):3611-22. PubMed ID: 19507943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wideband spherically focused PVDF acoustic sources for calibration of ultrasound hydrophone probes.
    Selfridge A; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1372-6. PubMed ID: 18238683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband PVDF membrane hydrophone for comparisons of hydrophone calibration methods up to 140 MHz.
    Wilkens V; Molkenstruck W
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Sep; 54(9):1784-91. PubMed ID: 17941384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.