These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 18290141)

  • 1. Primary calibration of ultrasonic hydrophone using optical interferometry.
    Bacon DR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):152-61. PubMed ID: 18290141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extending the frequency range of the National Physical Laboratory primary standard laser interferometer for hydrophone calibrations to 80 MHz.
    Esward TJ; Robinson SP
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):737-44. PubMed ID: 18238474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel method for determining calibration and behavior of PVDF ultrasonic hydrophone probes in the frequency range up to 100 MHz.
    Bleeker HJ; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(6):1354-62. PubMed ID: 18238681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Primary calibration of hydrophones with extended frequency range 1 to 70 MHz using optical interferometry.
    Koch C; Molkenstruck W
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1303-14. PubMed ID: 18244323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calibration of high-frequency hydrophone up to 40 MHz by heterodyne interferometer.
    Yang P; Xing G; He L
    Ultrasonics; 2014 Jan; 54(1):402-7. PubMed ID: 23932658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones.
    Beard PC; Hurrell AM; Mills TN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):256-64. PubMed ID: 18238538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of two methods for phase response calibration of hydrophones in the frequency range 10-400 kHz.
    Hayman G; Wang Y; Robinson S
    J Acoust Soc Am; 2013 Feb; 133(2):750-9. PubMed ID: 23363094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibration of miniature medical ultrasonic hydrophones for frequencies in the range 100 to 500 kHz using an ultrasonically absorbing waveguide.
    Rajagopal S; Zeqiri B; Gélat PN
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):765-78. PubMed ID: 24803021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary reciprocity-based method for calibration of hydrophone magnitude and phase sensitivity: complete tests at frequencies from 1 to 7 MHz.
    Oliveira EG; Costa-Felix RP; Machado JC
    Ultrasonics; 2015 Apr; 58():87-95. PubMed ID: 25578371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multiple-frequency hydrophone calibration technique.
    Smith RA; Bacon DR
    J Acoust Soc Am; 1990 May; 87(5):2231-43. PubMed ID: 2189922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calibration of hydrophones based on reciprocity and time delay spectrometry.
    Ludwig G; Brendel K
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):168-74. PubMed ID: 18290143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Practicalities of Obtaining and Using Hydrophone Calibration Data to Derive Pressure Waveforms.
    Hurrell AM; Rajagopal S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):126-140. PubMed ID: 27479961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a PVDF membrane hydrophone for use in air-coupled ultrasonic transducer calibration.
    Galbraith W; Hayward G
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1549-58. PubMed ID: 18250002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interlaboratory evaluation of hydrophone sensitivity calibration from 0.1 to 2 MHz via time delay spectrometry.
    Harris GR; Gammell PM; Lewin PA; Radulescu EG
    Ultrasonics; 2004 Apr; 42(1-9):349-53. PubMed ID: 15047310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absolute calibration of hydrophones immersed in sandy sediment.
    Robb GB; Robinson SP; Theobald PD; Hayman G; Humphrey VF; Leighton TG; Wang LS; Dix JK; Best AI
    J Acoust Soc Am; 2009 May; 125(5):2918-27. PubMed ID: 19425635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Comparison of Different Calibration Techniques for Hydrophones Used in Medical Ultrasonic Field Measurement.
    Weber M; Wilkens V
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1919-1929. PubMed ID: 33360988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output.
    Radulescu EG; Lewin PA; Wójcik J; Nowicki A; Berger WA
    Ultrasonics; 2004 Apr; 42(1-9):367-72. PubMed ID: 15047313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Importance of Consistent Insonation Conditions During Hydrophone Calibration and Use.
    Rajagopal S; Robinson SP; Ablitt J; Miloro P; Wang L; Zeqiri B; Hurrell A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Feb; 70(2):120-127. PubMed ID: 36094977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of sensitivity versus frequency characteristics of miniature ultrasonic hydrophones below 1 MHz using planar scanning technique.
    Devaraju V; Lewin PA; Bleeker H
    J Ultrasound Med; 2002 Mar; 21(3):261-8. PubMed ID: 11883536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calibration of medical ultrasonic equipment-procedures and accuracy assessment.
    Preston RC; Bacon DR; Smith RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):110-21. PubMed ID: 18290137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.