These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 18290149)

  • 1. Amplitude-dependent losses in ultrasound exposure measurement.
    Duck FA; Perkins MA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):232-41. PubMed ID: 18290149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In-vivo fetal ultrasound exposimetry.
    Daft CW; Siddiqi TA; Fitting DW; Meyer RA; O'Brien WR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(6):501-5. PubMed ID: 18285070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The output of pulse-echo ultrasound equipment: a survey of powers, pressures and intensities.
    Duck FA; Starritt HC; Aindow JD; Perkins MA; Hawkins AJ
    Br J Radiol; 1985 Oct; 58(694):989-1001. PubMed ID: 3916078
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of nonlinear fields on miniature hydrophone calibration using the planar scanning technique.
    Corbett SS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):162-7. PubMed ID: 18290142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A buoyancy method for the measurement of total ultrasound power generated by HIFU transducers.
    Shaw A
    Ultrasound Med Biol; 2008 Aug; 34(8):1327-42. PubMed ID: 18471952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear ultrasound propagation through layered liquid and tissue-equivalent media: computational and experimental results at high frequency.
    Williams R; Cherin E; Lam TY; Tavakkoli J; Zemp RJ; Foster FS
    Phys Med Biol; 2006 Nov; 51(22):5809-24. PubMed ID: 17068366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Losses in tissue associated with finite amplitude ultrasound transmission.
    Fry FJ; Dines KA; Reilly CR; Goss SA
    Ultrasound Med Biol; 1989; 15(5):481-97. PubMed ID: 2781679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of diagnostic electronic linear arrays by miniature hydrophone scanning.
    Ide M; Ohdaira E
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):214-9. PubMed ID: 18290147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for ultrasonic finite-amplitude distortion in muscle using medical equipment.
    Starritt HC; Perkins MA; Duck FA; Humphrey VF
    J Acoust Soc Am; 1985 Jan; 77(1):302-6. PubMed ID: 3973223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of nonlinear distortion on acoustic radiation force elastography.
    Draudt AB; Cleveland RO
    Ultrasound Med Biol; 2011 Nov; 37(11):1874-83. PubMed ID: 21963033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling of nonlinear effects and the response of ultrasound contrast micro bubbles: simulation and experiment.
    Kvikliene A; Jurkonis R; Ressner M; Hoff L; Jansson T; Janerot-Sjöberg B; Lukosevicius A; Ask P
    Ultrasonics; 2004 Apr; 42(1-9):301-7. PubMed ID: 15047302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low- and high-frequency nonlinear acoustic phenomena in a magnesite.
    Nazarov VE; Kolpakov AB
    Ultrasonics; 2014 Feb; 54(2):471-8. PubMed ID: 24035610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband attenuation and nonlinear propagation in biological fluids: an experimental facility and measurements.
    Verma PK; Humphrey VF; Duck FA
    Ultrasound Med Biol; 2005 Dec; 31(12):1723-33. PubMed ID: 16344135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration of medical ultrasonic equipment-procedures and accuracy assessment.
    Preston RC; Bacon DR; Smith RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(2):110-21. PubMed ID: 18290137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane hydrophone phase characteristics through nonlinear acoustics measurements.
    Bloomfield PE; Gandhi G; Lewin PA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Nov; 58(11):2418-37. PubMed ID: 22083775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of high intensity focused ultrasound transducers using acoustic streaming.
    Hariharan P; Myers MR; Robinson RA; Maruvada SH; Sliwa J; Banerjee RK
    J Acoust Soc Am; 2008 Mar; 123(3):1706-19. PubMed ID: 18345858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Absolute measurements of ultrasonic pressure by using high magnetic fields.
    Sharf Y; Clement GT; Hynynen K
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(6):1504-11. PubMed ID: 18244347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study of ultrasound attenuation during HIFU propagation in ox liver].
    Li F; Bai J; Wang Z; Ma P; Du Y; Wu F; Feng R
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Dec; 20(4):675-8. PubMed ID: 14716875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimum radiation force target size for power measurements in focused ultrasonic fields with circular symmetry.
    Beissner K
    J Acoust Soc Am; 2010 Dec; 128(6):3355-62. PubMed ID: 21218869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.