These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18290155)

  • 1. The acceleration sensitivity of quartz crystal oscillators: a review.
    Filler RL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):297-305. PubMed ID: 18290155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quartz crystal resonator g sensitivity measurement methods and recent results.
    Driscoll MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):386-92. PubMed ID: 18285055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of quartz crystal oscillator flicker-of-frequency and white phase noise (floor) levels and acceleration sensitivity via use of multiple resonators.
    Driscoll MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(4):427-30. PubMed ID: 18263203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity of quartz oscillators to the environment: characterization methods and pitfalls.
    Gagnepain JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):347-54. PubMed ID: 18285051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the acceleration sensitivity and its active reduction by edge electrodes in AT-cut quartz resonators.
    Chen J; Yong YK; Kubena R; Kirby D; Chang D
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1104-13. PubMed ID: 26067045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time digital compensation to reduce acceleration's sensitivity in quartz resonator.
    Qingxiao S; Jun Y; Jianyun C; Longzhe J; Feijiang H
    Rev Sci Instrum; 2012 Jun; 83(6):064706. PubMed ID: 22755650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage-controlled narrowband and wide, variable-range four-segment quartz crystal oscillator.
    Ruslan R; Satoh T; Akitsu T
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):564-72. PubMed ID: 22481794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A micromachined vibration isolation system for reducing the vibration sensitivity of surface transverse wave resonators.
    Reid JR; Bright VM; Kosinski JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):528-34. PubMed ID: 18244203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration Sensitivity in Bulk-Extensional Mode, Silicon-Based MEMS Oscillators.
    Khazaeili B; Gonzales J; Abdolvand R
    Micromachines (Basel); 2018 May; 9(5):. PubMed ID: 30424166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Note: sensitivity multiplication module for quartz crystal microbalance applications.
    Burda I; Silaghi A; Tunyagi A; Simon S; Popescu O
    Rev Sci Instrum; 2014 Feb; 85(2):026116. PubMed ID: 24593416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental sensitivities of quartz oscillators.
    Walls FL; Gagnepain JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(2):241-9. PubMed ID: 18263142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear frequency tuning of SAW resonators.
    Driscoll MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(4):366-9. PubMed ID: 18267597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The modulational method of quartz crystal oscillator frequency stabilization.
    Shmaliy YS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(6):1476-84. PubMed ID: 18249995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental evidence for mode shape influence on acceleration-induced frequency shifts in quartz resonators.
    Eernisse EP; Ward RW; Watts MH; Wiggins RB; Wood OL
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(6):566-70. PubMed ID: 18285079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase noise measurements of 10-MHz BVA quartz crystal resonators.
    Sthal F; Mourey M; Marionnet F; Walls WF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):369-73. PubMed ID: 18238552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory and design of piezoelectric resonators immune to acceleration: present state of the art.
    Kosinski JA; Pastore RA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Sep; 48(5):1426-37. PubMed ID: 11570769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing for low acceleration sensitivity.
    Kosinski JA; Ballato A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):532-7. PubMed ID: 18263217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a 10 MHz oscillator working with an LGT crystal resonator: preliminary results.
    Imbaud J; Galliou S; Romand JP; Abbe P; Bourquin R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):1913-20. PubMed ID: 18986888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental study on the characteristic of the NS-GT cut quartz crystal resonator oscillating in the sub-resonant frequency.
    Yamagata S; Kawashima H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1175-82. PubMed ID: 18244311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extremely low-phase-noise SAW resonators and oscillators: design and performance.
    Montress GK; Parker TE; Loboda MJ; Greer JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):657-67. PubMed ID: 18290201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.