These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 18290170)

  • 1. An approximate expression for the motional capacitance of a lateral field resonator.
    Smythe RC; Tiersten HF
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(3):435-6. PubMed ID: 18290170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonances and energy trapping in AT-cut quartz resonators operating with fast shear modes driven by lateral electric fields produced by surface electrodes.
    Ma T; Wang J; Du J; Yang J
    Ultrasonics; 2015 May; 59():14-20. PubMed ID: 25660411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental verification of stress compensation in the SBTC-cut.
    Valdois M; Sinha BK; Boy JJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(6):643-51. PubMed ID: 18290245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator.
    Patel MS; Yong YK
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):912-20. PubMed ID: 19473909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motional capacitance of layered piezoelectric thickness-mode resonators.
    Schmid M; Benes E; Burger W; Kravchenko V
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):199-206. PubMed ID: 18267576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quartz crystal resonator g sensitivity measurement methods and recent results.
    Driscoll MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):386-92. PubMed ID: 18285055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations on LGS and LGT crystals to realize BAW resonators.
    Imbaud J; Boy JJ; Galliou S; Bourquin R; Romand JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2384-91. PubMed ID: 19049918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental study on the characteristic of the NS-GT cut quartz crystal resonator oscillating in the sub-resonant frequency.
    Yamagata S; Kawashima H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1175-82. PubMed ID: 18244311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A temperature insensitive quartz microbalance.
    Pierce DE; Kim Y; Vig JR
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(5):1238-45. PubMed ID: 18244285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple method for SC-cut resonator design.
    Weiss K
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1508-12. PubMed ID: 11800111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Langasite, langanite, and langatate bulk-wave Y-cut resonators.
    Smythe RC; Helmbold RC; Hague GE; Snow KA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):355-60. PubMed ID: 18238550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical algorithms and results for SC-cut quartz plates vibrating at the third harmonic overtone of thickness shear.
    Yong YK; Zhang Z
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):685-93. PubMed ID: 18263256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drive level dependence of the resonant frequency in BAW quartz resonators and his modeling.
    Nosek J
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):823-9. PubMed ID: 18238484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of electromagnetic radiation on the Q of quartz resonators.
    Yong YK; Patel M; Vig J; Ballato A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):353-60. PubMed ID: 19251522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lam e-mode miniaturized quartz temperature sensors.
    Kanie H; Kawaehima H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):341-5. PubMed ID: 18238548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy trapping in high-frequency vibrations of piezoelectric plates with partial mass layers under lateral electric field excitation.
    Liu B; Jiang Q; Xie H; Yang J
    Ultrasonics; 2011 Apr; 51(3):376-81. PubMed ID: 21145572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mode selection for electrostatic beam resonators based on motional resistance and quality factor.
    Ryou JH; Gorman JJ
    J Appl Phys; 2016 Dec; 120(21):. PubMed ID: 28502993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of coupled fast-shear and extensional vibrations of a LiTaO3 crystal plate with a ferroelectric inversion layer.
    Ma T; Pei J; Wang J; Du J; Zhang C; Huang B; Yuan L; Yu F
    J Acoust Soc Am; 2016 May; 139(5):2635. PubMed ID: 27250157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses.
    Yong YK; Patel MS; Tanaka M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1831-9. PubMed ID: 20679012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Doubly rotated quartz resonators with a low amplitude-frequency effect: the LD-cut.
    Gufflet N; Sthal F; Boy JJ; Bourquin R; Mourey M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1681-5. PubMed ID: 11800131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.