These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 18290184)

  • 1. Equivalent networks for SAW gratings.
    Koshiba M; Mitobe S
    IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(5):531-5. PubMed ID: 18290184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-element solution of Rayleigh-wave scattering from reflective gratings on a piezoelectric substrate.
    Hasegawa K; Koshiba M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(2):99-105. PubMed ID: 18285020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface acoustic wave scattering from steps, grooves, and strips on piezoelectric substrates.
    Darinskii AN; Weihnacht M; Schmidt H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Sep; 57(9):2042-50. PubMed ID: 20875994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation and selection of LiNbO(3) and LiTaO(3) substrates for SAW devices by the LFB ultrasonic material characterization system.
    Kushibiki J; Ohashi Y; Ono Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):1068-76. PubMed ID: 18238642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Full-wave analysis of piezoelectric boundary waves propagating along metallic grating sandwiched between two semi-infinite layers.
    Wang Y; Hashimoto KY; Omori T; Yamaguchi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):806-11. PubMed ID: 19406709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical reflection coefficient and velocity shift for groove gratings.
    Robinson HC; Hahn Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):305-10. PubMed ID: 18267588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutual conversion of bulk and surface acoustic waves in gratings of finite length on half-infinite substrates. I. FE analysis of surface wave generation.
    Darinskii AN; Weihnacht M; Schmidt H
    Ultrasonics; 2013 Jul; 53(5):998-1003. PubMed ID: 23410980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arbitrarily oriented SAW gratings: network model and the coupling-of-modes description.
    Adler EL; da Cunha MP; Schwelb O
    IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(3):220-30. PubMed ID: 18267578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Super high electromechanical coupling and zero temperature coefficient surface acoustic wave substrates in KNbO(3) single crystal.
    Yamanouchi K; Odagawa H
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(3):700-5. PubMed ID: 18238470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel matching network employing surface acoustic wave devices for W-CDMA power amplifiers.
    Li H; He S; Hashimoto KY; Omori T; Yamaguchi M
    Ultrasonics; 2006 Dec; 44 Suppl 1():e905-9. PubMed ID: 16797655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of the leaky SAW attenuation with heavy mechanical loading.
    Koskela J; Plessky VP; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):439-49. PubMed ID: 18244195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of a ferroelectric inversion layer on the temperature characteristics of SH-Type surface acoustic waves on 36 degrees Y-X LiTaO (3) substrates.
    Nakamura K; Tourlog A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(6):872-5. PubMed ID: 18263277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutual conversion of bulk and surface acoustic waves in gratings of finite length on half-infinite substrates. II. FE analysis of bulk wave generation.
    Darinskii AN; Weihnacht M; Schmidt H
    Ultrasonics; 2013 Jul; 53(5):1004-11. PubMed ID: 23394893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise modeling of complex SAW structures using a perturbation method hybridized with a finite element analysis.
    Ballandras S; Bigler E
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(3):567-73. PubMed ID: 18244208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimized Stoneley wave device by proper choice of glass overcoat.
    Irino T; Shimizu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 1989; 36(2):159-67. PubMed ID: 18284963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stopband characteristics of shallow gratings.
    Prasad SN; Schwelb O
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(2):79-84. PubMed ID: 18285018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate measurements of the acoustical physical constants of LiNbO (3) and LiTaO(3) single crystals.
    Kushibiki J; Takanaga I; Arakawa M; Sannomiya T
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(5):1315-23. PubMed ID: 18244324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical and experimental investigation of kerf depth effect on high-frequency phased array transducer.
    Zhang JY; Xu WJ; Carlier J; Ji XM; Queste S; Nongaillard B; Huang YP
    Ultrasonics; 2012 Feb; 52(2):223-9. PubMed ID: 21907378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the film thickness dependence of a single-phase unidirectional transducer using the coupling-of-modes theory and the finite-element method.
    Chen ZH; Takeuchi M; Yamanouchi K
    IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(1):82-94. PubMed ID: 18263122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short reflectors operating at the fundamental and second harmonics on 128 degree LiNbO3.
    Lehtonen S; Plessky VP; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Mar; 51(3):343-51. PubMed ID: 15128221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.