These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 18290216)
1. Characteristics of a Lagrangian, high-frequency plate element for the static temperature behavior of low-frequency quartz resonators. Yong YK IEEE Trans Ultrason Ferroelectr Freq Control; 1988; 35(6):788-99. PubMed ID: 18290216 [TBL] [Abstract][Full Text] [Related]
2. On the accuracy of Mindlin plate predictions for the frequency-temperature behavior of resonant modes in AT- and SC-cut quartz plates. Yong YK; Wang J; Imai T IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):1-13. PubMed ID: 18238393 [TBL] [Abstract][Full Text] [Related]
3. Theory and experimental verifications of the resonator Q and equivalent electrical parameters due to viscoelastic and mounting supports losses. Yong YK; Patel MS; Tanaka M IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Aug; 57(8):1831-9. PubMed ID: 20679012 [TBL] [Abstract][Full Text] [Related]
4. A perturbation method for finite element modeling of piezoelectric vibrations in quartz plate resonators. Yong YK; Zhang Z IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):551-62. PubMed ID: 18263220 [TBL] [Abstract][Full Text] [Related]
5. An analysis of thickness-shear vibrations of doubly-rotated quartz crystal plates with the corrected first-order Mindlin plate equations. Du J; Wang W; Chen G; Wu R; Huang D; Ma T; Wang J IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Nov; 60(11):2371-80. PubMed ID: 24158292 [TBL] [Abstract][Full Text] [Related]
6. Mass-frequency influence surface, mode shapes, and frequency spectrum of a rectangular AT-cut quartz plate. Yong YK; Stewart JT IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(1):67-73. PubMed ID: 18267559 [TBL] [Abstract][Full Text] [Related]
7. Conceptual design of a high-Q, 3.4-GHz thin film quartz resonator. Patel MS; Yong YK IEEE Trans Ultrason Ferroelectr Freq Control; 2009 May; 56(5):912-20. PubMed ID: 19473909 [TBL] [Abstract][Full Text] [Related]
8. Forced vibrations of SC-cut quartz crystal rectangular plates with partial electrodes by the Lee plate equations. Wu R; Wang W; Chen G; Du J; Ma T; Wang J Ultrasonics; 2016 Feb; 65():338-44. PubMed ID: 26433435 [TBL] [Abstract][Full Text] [Related]
9. Overtone frequency spectra for x3-dependent modes in AT-cut quartz resonators. Zhu J; Chen W; Yang J IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Apr; 60(4):858-63. PubMed ID: 23549548 [TBL] [Abstract][Full Text] [Related]
10. The frequency-temperature analysis equations of piezoelectric plates with Lee plate theory. Wang J IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(4):1042-6. PubMed ID: 18238510 [TBL] [Abstract][Full Text] [Related]
11. Five-mode frequency spectra of x3-dependent modes in AT-cut quartz resonators. Chen G; Wu R; Wang J; Du J; Yang J IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):811-6. PubMed ID: 22547292 [TBL] [Abstract][Full Text] [Related]
12. On the acceleration sensitivity and its active reduction by edge electrodes in AT-cut quartz resonators. Chen J; Yong YK; Kubena R; Kirby D; Chang D IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1104-13. PubMed ID: 26067045 [TBL] [Abstract][Full Text] [Related]
13. The calculation of electrical parameters of AT-cut quartz crystal resonators with the consideration of material viscosity. Wang J; Zhao W; Du J; Hu Y Ultrasonics; 2011 Jan; 51(1):65-70. PubMed ID: 20594568 [TBL] [Abstract][Full Text] [Related]
14. Thickness-shear mode shapes and mass-frequency influence surface of a circular and electroded AT-cut quartz resonator. Yong YK; Stewart JT; Detaint J; Zarka A; Capelle B; Zheng Y IEEE Trans Ultrason Ferroelectr Freq Control; 1992; 39(5):609-17. PubMed ID: 18267672 [TBL] [Abstract][Full Text] [Related]
15. Acceleration sensitivity of crystal resonators affected by the mass and location of electrodes. Lee PY; Guo X IEEE Trans Ultrason Ferroelectr Freq Control; 1991; 38(4):358-65. PubMed ID: 18267596 [TBL] [Abstract][Full Text] [Related]
16. Numerical algorithms and results for SC-cut quartz plates vibrating at the third harmonic overtone of thickness shear. Yong YK; Zhang Z IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(5):685-93. PubMed ID: 18263256 [TBL] [Abstract][Full Text] [Related]
17. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots. Busch MH; Vollmann W; Grönemeyer DH Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878 [TBL] [Abstract][Full Text] [Related]
18. Correction factors of the Mindlin plate equations with the consideration of electrodes. Du J; Chen G; Wang W; Wu R; Ma T; Wang J IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Oct; 59(10):2352-8. PubMed ID: 23143585 [TBL] [Abstract][Full Text] [Related]
19. K-cut quartz SAW resonators for stable frequency sources. Takagi M; Momosaki E; Yamakita M; Oura N IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(2):328-37. PubMed ID: 18244184 [TBL] [Abstract][Full Text] [Related]