These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 18290338)

  • 1. Tumor-specific nano-entities for optical detection and hyperthermic treatment of breast cancer.
    Jin H; Hong B; Kakar SS; Kang KA
    Adv Exp Med Biol; 2008; 614():275-84. PubMed ID: 18290338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of novel metal nanoparticles as optical/thermal agents in optical mammography and hyperthermic treatment for breast cancer.
    Jin H; Kang KA
    Adv Exp Med Biol; 2007; 599():45-52. PubMed ID: 17727246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A method of showing thermal effect of iron oxide nanoparticles in alternating magnetic field].
    Liu X; Xu B; Xia QS; Zhao TD; Tang JT
    Ai Zheng; 2005 Sep; 24(9):1148-50. PubMed ID: 16159444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OCT-guided laser hyperthermia with passively tumor-targeted gold nanoparticles.
    Sirotkina MA; Elagin VV; Shirmanova MV; Bugrova ML; Snopova LB; Kamensky VA; Nadtochenko VA; Denisov NN; Zagaynova EV
    J Biophotonics; 2010 Oct; 3(10-11):718-27. PubMed ID: 20626005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of AEM energy applicator configuration on magnetic nanoparticle mediated hyperthermia for breast cancer.
    Sanapala KK; Hewaparakrama K; Kang KA
    Adv Exp Med Biol; 2011; 701():143-8. PubMed ID: 21445781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Smart human serum albumin-indocyanine green nanoparticles generated by programmed assembly for dual-modal imaging-guided cancer synergistic phototherapy.
    Sheng Z; Hu D; Zheng M; Zhao P; Liu H; Gao D; Gong P; Gao G; Zhang P; Ma Y; Cai L
    ACS Nano; 2014 Dec; 8(12):12310-22. PubMed ID: 25454579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurements of nanoparticle-enhanced heating from 1MHz ultrasound in solution and in mice bearing CT26 colon tumors.
    Beik J; Abed Z; Ghadimi-Daresajini A; Nourbakhsh M; Shakeri-Zadeh A; Ghasemi MS; Shiran MB
    J Therm Biol; 2016 Dec; 62(Pt A):84-89. PubMed ID: 27839555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A radio-frequency coupling network for heating of citrate-coated gold nanoparticles for cancer therapy: design and analysis.
    Kruse DE; Stephens DN; Lindfors HA; Ingham ES; Paoli EE; Ferrara KW
    IEEE Trans Biomed Eng; 2011 Jul; 58(7):2002-12. PubMed ID: 21402506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles.
    Kneipp J; Kneipp H; Rice WL; Kneipp K
    Anal Chem; 2005 Apr; 77(8):2381-5. PubMed ID: 15828770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro self-assembly of gold nanoparticle-coated poly(3-hydroxybutyrate) granules exhibiting plasmon-induced thermo-optical enhancements.
    Rey DA; Strickland AD; Kirui D; Niamsiri N; Batt CA
    ACS Appl Mater Interfaces; 2010 Jul; 2(7):1804-10. PubMed ID: 20565131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal ablation of tumors using magnetic nanoparticles: an in vivo feasibility study.
    Hilger I; Hiergeist R; Hergt R; Winnefeld K; Schubert H; Kaiser WA
    Invest Radiol; 2002 Oct; 37(10):580-6. PubMed ID: 12352168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditionally activating optical contrast agent with enhanced sensitivity via gold nanoparticle plasmon energy transfer: feasibility study.
    Kang KA; Wang J
    J Nanobiotechnology; 2014 Dec; 12():56. PubMed ID: 25481683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications.
    Shi D; Sadat ME; Dunn AW; Mast DB
    Nanoscale; 2015 May; 7(18):8209-32. PubMed ID: 25899408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined effects of laser-ICG photothermotherapy and doxorubicin chemotherapy on ovarian cancer cells.
    Tang Y; McGoron AJ
    J Photochem Photobiol B; 2009 Dec; 97(3):138-44. PubMed ID: 19811928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NIR fluorophore-hollow gold nanosphere complex for cancer enzyme-triggered detection and hyperthermia.
    Wang J; Wheeler D; Zhang JZ; Achilefu S; Kang KA
    Adv Exp Med Biol; 2013; 765():323-328. PubMed ID: 22879051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photothermal ablation of human lung cancer by low-power near-infrared laser and topical injection of indocyanine green.
    Hirohashi K; Anayama T; Wada H; Nakajima T; Kato T; Keshavjee S; Orihashi K; Yasufuku K
    J Bronchology Interv Pulmonol; 2015 Apr; 22(2):99-106. PubMed ID: 25887004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LHRH receptor targeted therapy for breast cancer.
    Kakar SS; Jin H; Hong B; Eaton JW; Kang KA
    Adv Exp Med Biol; 2008; 614():285-96. PubMed ID: 18290339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bi-functional properties of Fe3O4@YPO4:Eu hybrid nanoparticles: hyperthermia application.
    Prasad AI; Parchur AK; Juluri RR; Jadhav N; Pandey BN; Ningthoujam RS; Vatsa RK
    Dalton Trans; 2013 Apr; 42(14):4885-96. PubMed ID: 23370409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy.
    Zheng X; Xing D; Zhou F; Wu B; Chen WR
    Mol Pharm; 2011 Apr; 8(2):447-56. PubMed ID: 21197955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.