These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18290343)

  • 1. Muscle oxygen uptake differs from consumption dynamics during transients in exercise.
    Lai N; Syed N; Saidel GM; Cabrera ME
    Adv Exp Med Biol; 2008; 614():325-32. PubMed ID: 18290343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A validated model of oxygen uptake and circulatory dynamic interactions at exercise onset in humans.
    Benson AP; Grassi B; Rossiter HB
    J Appl Physiol (1985); 2013 Sep; 115(5):743-55. PubMed ID: 23766506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling oxygenation in venous blood and skeletal muscle in response to exercise using near-infrared spectroscopy.
    Lai N; Zhou H; Saidel GM; Wolf M; McCully K; Gladden LB; Cabrera ME
    J Appl Physiol (1985); 2009 Jun; 106(6):1858-74. PubMed ID: 19342438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relating pulmonary oxygen uptake to muscle oxygen consumption at exercise onset: in vivo and in silico studies.
    Lai N; Dash RK; Nasca MM; Saidel GM; Cabrera ME
    Eur J Appl Physiol; 2006 Jul; 97(4):380-94. PubMed ID: 16636861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous measurement of macro- and microvascular blood flow and oxygen saturation for quantification of muscle oxygen consumption.
    Englund EK; Rodgers ZB; Langham MC; Mohler ER; Floyd TF; Wehrli FW
    Magn Reson Med; 2018 Feb; 79(2):846-855. PubMed ID: 28497497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model of oxygen transport and metabolism predicts effect of hyperoxia on canine muscle oxygen uptake dynamics.
    Lai N; Saidel GM; Grassi B; Gladden LB; Cabrera ME
    J Appl Physiol (1985); 2007 Oct; 103(4):1366-78. PubMed ID: 17600157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of O2 in regulation of lactate dynamics during hypoxia: mathematical model and analysis.
    Cabrera ME; Saidel GM; Kalhan SC
    Ann Biomed Eng; 1998; 26(1):1-27. PubMed ID: 10355547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen transport: air to muscle cell.
    Richardson RS
    Med Sci Sports Exerc; 1998 Jan; 30(1):53-9. PubMed ID: 9475644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-scale model of O2 transport and metabolism: response to exercise.
    Zhou H; Lai N; Saidel GM; Cabrera ME
    Ann N Y Acad Sci; 2008 Mar; 1123():178-86. PubMed ID: 18375590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of lung ventilation-perfusion and muscle metabolism-perfusion heterogeneities on maximal O2 transport and utilization.
    Cano I; Roca J; Wagner PD
    J Physiol; 2015 Apr; 593(8):1841-56. PubMed ID: 25640017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slowed oxygen uptake kinetics in hypoxia correlate with the transient peak and reduced spatial distribution of absolute skeletal muscle deoxygenation.
    Bowen TS; Rossiter HB; Benson AP; Amano T; Kondo N; Kowalchuk JM; Koga S
    Exp Physiol; 2013 Nov; 98(11):1585-96. PubMed ID: 23851917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle deoxygenation after the onset of moderate exercise suggests slowed microvascular blood flow kinetics in type 2 diabetes.
    Bauer TA; Reusch JE; Levi M; Regensteiner JG
    Diabetes Care; 2007 Nov; 30(11):2880-5. PubMed ID: 17675540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythrocyte and the regulation of human skeletal muscle blood flow and oxygen delivery: role of circulating ATP.
    González-Alonso J; Olsen DB; Saltin B
    Circ Res; 2002 Nov; 91(11):1046-55. PubMed ID: 12456491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle mass and inspired oxygen influence oxygen extraction at maximal exercise: Role of mitochondrial oxygen affinity.
    Cardinale DA; Larsen FJ; Jensen-Urstad M; Rullman E; Søndergaard H; Morales-Alamo D; Ekblom B; Calbet JAL; Boushel R
    Acta Physiol (Oxf); 2019 Jan; 225(1):e13110. PubMed ID: 29863764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between pulmonary O2 uptake kinetics and muscle deoxygenation during moderate-intensity exercise.
    DeLorey DS; Kowalchuk JM; Paterson DH
    J Appl Physiol (1985); 2003 Jul; 95(1):113-20. PubMed ID: 12679363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking pulmonary oxygen uptake, muscle oxygen utilization and cellular metabolism during exercise.
    Lai N; Camesasca M; Saidel GM; Dash RK; Cabrera ME
    Ann Biomed Eng; 2007 Jun; 35(6):956-69. PubMed ID: 17380394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of ageing on muscle O2 utilization and muscle oxygenation during the transition to moderate-intensity exercise.
    DeLorey DS; Paterson DH; Kowalchuk JM
    Appl Physiol Nutr Metab; 2007 Dec; 32(6):1251-62. PubMed ID: 18059603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human femoral artery and estimated muscle capillary blood flow kinetics following the onset of exercise.
    Harper AJ; Ferreira LF; Lutjemeier BJ; Townsend DK; Barstow TJ
    Exp Physiol; 2006 Jul; 91(4):661-71. PubMed ID: 16556660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of NADH/NAD+ transport activity and glycogen store on skeletal muscle energy metabolism during exercise: in silico studies.
    Li Y; Dash RK; Kim J; Saidel GM; Cabrera ME
    Am J Physiol Cell Physiol; 2009 Jan; 296(1):C25-46. PubMed ID: 18829894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Does postexercise modelled capillary blood flow accurately reflect cardiovascular effects by different exercise intensities?
    Stöcker F; Von Oldershausen C; Paternoster FK; Schulz T; Oberhoffer R
    Clin Physiol Funct Imaging; 2018 May; 38(3):431-438. PubMed ID: 28444930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.