These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 18290531)

  • 21. Half saturation constants for nitrate and nitrite by in-sewer anoxic transformations of wastewater organic matter.
    Abdul-Talib S; Hvitved-Jacobsen T; Vollertsen J; Ujang Z
    Water Sci Technol; 2002; 46(9):185-92. PubMed ID: 12448468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anoxic sulfide oxidation in wastewater of sewer networks.
    Yang W; Vollertsen J; Hvitved-Jacobsen T
    Water Sci Technol; 2005; 52(3):191-9. PubMed ID: 16206859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sewer modelling based on highly distributed calibration data sets and multi-objective auto-calibration schemes.
    Muschalla D; Schneider S; Schröter K; Gamerith V; Gruber G
    Water Sci Technol; 2008; 57(10):1547-54. PubMed ID: 18520011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of sulfide formation in sewer pressure mains based on the IWA Anaerobic Digestion Model No. 1 (ADM1).
    Freudenthal K; Koglatis J; Otterpohl R; Behrendt J
    Water Sci Technol; 2005; 52(10-11):13-22. PubMed ID: 16459772
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new approach for modelling simultaneous storage and growth processes for activated sludge systems under aerobic conditions.
    Sin G; Guisasola A; De Pauw DJ; Baeza JA; Carrera J; Vanrolleghem PA
    Biotechnol Bioeng; 2005 Dec; 92(5):600-13. PubMed ID: 16240437
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In sewer processes: mathematical model development and sensitivity analysis.
    Calabrò PS; Mannina G; Viviani G
    Water Sci Technol; 2009; 60(1):107-15. PubMed ID: 19587408
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The erosion of organic solids in combined sewers.
    Ahyerre M; Oms C; Chebbo G
    Water Sci Technol; 2001; 43(5):95-102. PubMed ID: 11379161
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assessment on activated sludge models for acetate biodegradation under aerobic conditions.
    Hoque MA; Aravinthan V; Pradhan NM
    Water Sci Technol; 2009; 60(4):983-94. PubMed ID: 19700837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic evaluation of a dynamic sewer process model for prediction of odor formation and mitigation in large-scale pressurized sewers in Hong Kong.
    Liang ZS; Zhang L; Wu D; Chen GH; Jiang F
    Water Res; 2019 May; 154():94-103. PubMed ID: 30776618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transient response of aerobic and anoxic activated sludge activities to sudden substrate concentration changes.
    Vanrolleghem PA; Sin G; Gernaey KV
    Biotechnol Bioeng; 2004 May; 86(3):277-90. PubMed ID: 15083508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calibration of denitrifying activity of polyphosphate accumulating organisms in an extended ASM2d model.
    García-Usach F; Ribes J; Ferrer J; Seco A
    Water Res; 2010 Oct; 44(18):5284-97. PubMed ID: 20638698
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aerobic phosphorus release linked to acetate uptake in bio-P sludge: process modeling using oxygen uptake rate.
    Guisasola A; Pijuan M; Baeza JA; Carrera J; Casas C; Lafuente J
    Biotechnol Bioeng; 2004 Mar; 85(7):722-33. PubMed ID: 14991650
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissolved oxygen in gravity sewers--measurement and simulation.
    Gudjonsson G; Vollertsen J; Hvitved-Jacobsen T
    Water Sci Technol; 2002; 45(3):35-44. PubMed ID: 11902480
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.
    Kishida N; Kim J; Tsuneda S; Sudo R
    Water Res; 2006 Jul; 40(12):2303-10. PubMed ID: 16766009
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO(2) emissions.
    Mouri G; Oki T
    Water Sci Technol; 2010; 62(10):2346-56. PubMed ID: 21076221
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Storage and growth of denitrifiers in aerobic granules: part II. model calibration and verification.
    Ni BJ; Yu HQ; Xie WM
    Biotechnol Bioeng; 2008 Feb; 99(2):324-32. PubMed ID: 17614331
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bayesian analysis for erosion modelling of sediments in combined sewer systems.
    Kanso A; Chebbo G; Tassin B
    Water Sci Technol; 2005; 52(5):135-42. PubMed ID: 16248189
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigating and modelling the development of septic sewage in filled sewers under static conditions: a lab-scale feasibility study.
    Bachmann RT; Saul AJ; Edyvean RG
    Sci Total Environ; 2007 Dec; 388(1-3):194-205. PubMed ID: 17920658
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sulfide production and wastewater quality--investigations in a pilot plant pressure sewer.
    Tanaka N; Hvitved-Jacobsen T
    Water Sci Technol; 2001; 43(5):129-36. PubMed ID: 11379124
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Linearization of the activated sludge model ASM1 for fast and reliable predictions.
    Smets IY; Haegebaert JV; Carrette R; Van Impe JF
    Water Res; 2003 Apr; 37(8):1831-51. PubMed ID: 12697227
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.