BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 18290632)

  • 1. Complex ligand-induced conformational changes in tRNA(Asp) revealed by single-nucleotide resolution SHAPE chemistry.
    Wang B; Wilkinson KA; Weeks KM
    Biochemistry; 2008 Mar; 47(11):3454-61. PubMed ID: 18290632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA SHAPE chemistry reveals nonhierarchical interactions dominate equilibrium structural transitions in tRNA(Asp) transcripts.
    Wilkinson KA; Merino EJ; Weeks KM
    J Am Chem Soc; 2005 Apr; 127(13):4659-67. PubMed ID: 15796531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yeast aspartyl-tRNA synthetase residues interacting with tRNA(Asp) identity bases connectively contribute to tRNA(Asp) binding in the ground and transition-state complex and discriminate against non-cognate tRNAs.
    Eriani G; Gangloff J
    J Mol Biol; 1999 Aug; 291(4):761-73. PubMed ID: 10452887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of solvated yeast tRNA(Asp).
    Auffinger P; Louise-May S; Westhof E
    Biophys J; 1999 Jan; 76(1 Pt 1):50-64. PubMed ID: 9876122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binding of tobramycin leads to conformational changes in yeast tRNA(Asp) and inhibition of aminoacylation.
    Walter F; Pütz J; Giegé R; Westhof E
    EMBO J; 2002 Feb; 21(4):760-8. PubMed ID: 11847123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arginine aminoacylation identity is context-dependent and ensured by alternate recognition sets in the anticodon loop of accepting tRNA transcripts.
    Sissler M; Giegé R; Florentz C
    EMBO J; 1996 Sep; 15(18):5069-76. PubMed ID: 8890180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) with the group I intron P4-P6 domain. Thermodynamic analysis and the role of metal ions.
    Caprara MG; Myers CA; Lambowitz AM
    J Mol Biol; 2001 Apr; 308(2):165-90. PubMed ID: 11327760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. tRNA prefers to kiss.
    Scarabino D; Crisari A; Lorenzini S; Williams K; Tocchini-Valentini GP
    EMBO J; 1999 Aug; 18(16):4571-8. PubMed ID: 10449422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of uranyl photocleavage as a probe to monitor ion binding and flexibility in RNAs.
    Wittberger D; Berens C; Hammann C; Westhof E; Schroeder R
    J Mol Biol; 2000 Jul; 300(2):339-52. PubMed ID: 10873469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural specificity of nuclease from wheat chloroplasts stroma.
    Gabryszuk J; Keith G; Mońko M; Kuligowska E; Dirheimer G; Szarkowski JW; Przykorska A
    Nucleic Acids Symp Ser; 1995; (33):115-9. PubMed ID: 8643343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA structure analysis at single nucleotide resolution by selective 2'-hydroxyl acylation and primer extension (SHAPE).
    Merino EJ; Wilkinson KA; Coughlan JL; Weeks KM
    J Am Chem Soc; 2005 Mar; 127(12):4223-31. PubMed ID: 15783204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational transitions of an unmodified tRNA: implications for RNA folding.
    Maglott EJ; Deo SS; Przykorska A; Glick GD
    Biochemistry; 1998 Nov; 37(46):16349-59. PubMed ID: 9819227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic structure of transfer RNA in solution monitored by reaction with hydroxyl radicals.
    Barciszewska MZ; Erdmann VA; Barciszewski J
    Biochem Int; 1992 Sep; 27(6):1127-34. PubMed ID: 1332722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxation of a transfer RNA specificity by removal of modified nucleotides.
    Perret V; Garcia A; Grosjean H; Ebel JP; Florentz C; Giegé R
    Nature; 1990 Apr; 344(6268):787-9. PubMed ID: 2330033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pseudouridine synthetase Pus1 of Saccharomyces cerevisiae: kinetic characterisation, tRNA structural requirement and real-time analysis of its complex with tRNA.
    Arluison V; Buckle M; Grosjean H
    J Mol Biol; 1999 Jun; 289(3):491-502. PubMed ID: 10356324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential helix stabilities and sites pre-organized for tertiary interactions revealed by monitoring local nucleotide flexibility in the bI5 group I intron RNA.
    Chamberlin SI; Weeks KM
    Biochemistry; 2003 Feb; 42(4):901-9. PubMed ID: 12549908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the yeast tRNA m7G methylation complex.
    Leulliot N; Chaillet M; Durand D; Ulryck N; Blondeau K; van Tilbeurgh H
    Structure; 2008 Jan; 16(1):52-61. PubMed ID: 18184583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotides of the tRNA D-stem that play an important role in nuclear-tRNA export in Saccharomyces cerevisiae.
    Cleary JD; Mangroo D
    Biochem J; 2000 Apr; 347 Pt 1(Pt 1):115-22. PubMed ID: 10727409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A yeast arginine specific tRNA is a remnant aspartate acceptor.
    Fender A; Geslain R; Eriani G; Giegé R; Sissler M; Florentz C
    Nucleic Acids Res; 2004; 32(17):5076-86. PubMed ID: 15452274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of tertiary structure in tRNAs by Rh(phen)2phi3+, a new reagent for RNA structure-function mapping.
    Chow CS; Behlen LS; Uhlenbeck OC; Barton JK
    Biochemistry; 1992 Feb; 31(4):972-82. PubMed ID: 1734973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.