BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 18290647)

  • 1. Maturation of an Escherichia coli ribosomal peptide antibiotic by ATP-consuming N-P bond formation in microcin C7.
    Roush RF; Nolan EM; Löhr F; Walsh CT
    J Am Chem Soc; 2008 Mar; 130(11):3603-9. PubMed ID: 18290647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations of the MceIJ-catalyzed posttranslational modification of the microcin E492 C-terminus: linkage of ribosomal and nonribosomal peptides to form "trojan horse" antibiotics.
    Nolan EM; Walsh CT
    Biochemistry; 2008 Sep; 47(35):9289-99. PubMed ID: 18690711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How the MccB bacterial ancestor of ubiquitin E1 initiates biosynthesis of the microcin C7 antibiotic.
    Regni CA; Roush RF; Miller DJ; Nourse A; Walsh CT; Schulman BA
    EMBO J; 2009 Jul; 28(13):1953-64. PubMed ID: 19494832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP/GTP hydrolysis is required for oxazole and thiazole biosynthesis in the peptide antibiotic microcin B17.
    Milne JC; Eliot AC; Kelleher NL; Walsh CT
    Biochemistry; 1998 Sep; 37(38):13250-61. PubMed ID: 9748332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Identification and expression of plasmid genes participating in the synthesis of microcin C51].
    Fomenko DE; Basiuk EI; Bezrukov VM; Volodin AA; Metlitskaia AZ; Khmel' IA
    Genetika; 1996 Oct; 32(10):1326-32. PubMed ID: 9091404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Congeneric lantibiotics from ribosomal in vivo peptide synthesis with noncanonical amino acids.
    Oldach F; Al Toma R; Kuthning A; Caetano T; Mendo S; Budisa N; Süssmuth RD
    Angew Chem Int Ed Engl; 2012 Jan; 51(2):415-8. PubMed ID: 22128014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ribosome-controlled transcription termination is essential for the production of antibiotic microcin C.
    Zukher I; Novikova M; Tikhonov A; Nesterchuk MV; Osterman IA; Djordjevic M; Sergiev PV; Sharma CM; Severinov K
    Nucleic Acids Res; 2014 Oct; 42(19):11891-902. PubMed ID: 25274735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Microcins--peptide antibiotics of enterobacteria: genetic control of the synthesis, structure, and mechanism of action].
    Khmel' IA
    Genetika; 1999 Jan; 35(1):5-16. PubMed ID: 10330606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modular structure of microcin H47 and colicin V.
    Azpiroz MF; Laviña M
    Antimicrob Agents Chemother; 2007 Jul; 51(7):2412-9. PubMed ID: 17452478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphoramidate pronucleotides: a comparison of the phosphoramidase substrate specificity of human and Escherichia coli histidine triad nucleotide binding proteins.
    Chou TF; Baraniak J; Kaczmarek R; Zhou X; Cheng J; Ghosh B; Wagner CR
    Mol Pharm; 2007; 4(2):208-17. PubMed ID: 17217311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical structure and translation inhibition studies of the antibiotic microcin C7.
    Guijarro JI; González-Pastor JE; Baleux F; San Millán JL; Castilla MA; Rico M; Moreno F; Delepierre M
    J Biol Chem; 1995 Oct; 270(40):23520-32. PubMed ID: 7559516
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From peptide precursors to oxazole and thiazole-containing peptide antibiotics: microcin B17 synthase.
    Li YM; Milne JC; Madison LL; Kolter R; Walsh CT
    Science; 1996 Nov; 274(5290):1188-93. PubMed ID: 8895467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two enzymes catalyze the maturation of a lasso peptide in Escherichia coli.
    Duquesne S; Destoumieux-Garzón D; Zirah S; Goulard C; Peduzzi J; Rebuffat S
    Chem Biol; 2007 Jul; 14(7):793-803. PubMed ID: 17656316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and organization of plasmid genes required to produce the translation inhibitor microcin C7.
    González-Pastor JE; San Millán JL; Castilla MA; Moreno F
    J Bacteriol; 1995 Dec; 177(24):7131-40. PubMed ID: 8522520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular mechanism of aminopropylation of peptide-nucleotide antibiotic microcin C.
    Kulikovsky A; Serebryakova M; Bantysh O; Metlitskaya A; Borukhov S; Severinov K; Dubiley S
    J Am Chem Soc; 2014 Aug; 136(31):11168-75. PubMed ID: 25026542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reiterative Synthesis by the Ribosome and Recognition of the N-Terminal Formyl Group by Biosynthetic Machinery Contribute to Evolutionary Conservation of the Length of Antibiotic Microcin C Peptide Precursor.
    Zukher I; Pavlov M; Tsibulskaya D; Kulikovsky A; Zyubko T; Bikmetov D; Serebryakova M; Nair SK; Ehrenberg M; Dubiley S; Severinov K
    mBio; 2019 Apr; 10(2):. PubMed ID: 31040244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One of nature's macromolecular machines demystified.
    Stubbe J
    Science; 1996 Nov; 274(5290):1152-3. PubMed ID: 8966589
    [No Abstract]   [Full Text] [Related]  

  • 18. Enzymatic Synthesis and Functional Characterization of Bioactive Microcin C-Like Compounds with Altered Peptide Sequence and Length.
    Bantysh O; Serebryakova M; Zukher I; Kulikovsky A; Tsibulskaya D; Dubiley S; Severinov K
    J Bacteriol; 2015 Oct; 197(19):3133-41. PubMed ID: 26195597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parasitism of iron-siderophore receptors of Escherichia coli by the siderophore-peptide microcin E492m and its unmodified counterpart.
    Destoumieux-Garzón D; Peduzzi J; Thomas X; Djediat C; Rebuffat S
    Biometals; 2006 Apr; 19(2):181-91. PubMed ID: 16718603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete sequence of low-copy-number plasmid MccC7-H22 of probiotic Escherichia coli H22 and the prevalence of mcc genes among human E. coli.
    Smajs D; Strouhal M; Matejková P; Cejková D; Cursino L; Chartone-Souza E; Smarda J; Nascimento AM
    Plasmid; 2008 Jan; 59(1):1-10. PubMed ID: 17936903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.