These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 18290688)
1. Toxicity and metal speciation in acid mine drainage treated by passive bioreactors. Neculita CM; Vigneault B; Zagury GJ Environ Toxicol Chem; 2008 Aug; 27(8):1659-67. PubMed ID: 18290688 [TBL] [Abstract][Full Text] [Related]
2. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349 [TBL] [Abstract][Full Text] [Related]
3. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor. Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747 [TBL] [Abstract][Full Text] [Related]
4. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria: critical review and research needs. Neculita CM; Zagury GJ; Bussière B J Environ Qual; 2007; 36(1):1-16. PubMed ID: 17215207 [TBL] [Abstract][Full Text] [Related]
5. Metal removal efficiency and ecotoxicological assessment of field-scale passive treatment biochemical reactors. Butler BA; Smith ME; Reisman DJ; Lazorchak JM Environ Toxicol Chem; 2011 Feb; 30(2):385-92. PubMed ID: 21072838 [TBL] [Abstract][Full Text] [Related]
6. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
8. Biochemical passive reactors for treatment of acid mine drainage: Effect of hydraulic retention time on changes in efficiency, composition of reactive mixture, and microbial activity. Vasquez Y; Escobar MC; Neculita CM; Arbeli Z; Roldan F Chemosphere; 2016 Jun; 153():244-53. PubMed ID: 27016821 [TBL] [Abstract][Full Text] [Related]
9. Long-term performance of a UASB reactor treating acid mine drainage: effects of sulfate loading rate, hydraulic retention time, and COD/SO Cunha MP; Ferraz RM; Sancinetti GP; Rodriguez RP Biodegradation; 2019 Feb; 30(1):47-58. PubMed ID: 30406872 [TBL] [Abstract][Full Text] [Related]
10. Effect of hardness on acute toxicity of metal mixtures using Daphnia magna: prediction of acid mine drainage toxicity. Yim JH; Kim KW; Kim SD J Hazard Mater; 2006 Nov; 138(1):16-21. PubMed ID: 16806685 [TBL] [Abstract][Full Text] [Related]
11. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor. Kaksonen AH; Franzmann PD; Puhakka JA Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513 [TBL] [Abstract][Full Text] [Related]
12. Pilot-scale passive bioreactors for the treatment of acid mine drainage: efficiency of mushroom compost vs. mixed substrates for metal removal. Song H; Yim GJ; Ji SW; Neculita CM; Hwang T J Environ Manage; 2012 Nov; 111():150-8. PubMed ID: 22892144 [TBL] [Abstract][Full Text] [Related]
13. Potential risks of effluent from acid mine drainage treatment plants at abandoned coal mines. Seo J; Kang SW; Ji W; Jo HJ; Jung J Bull Environ Contam Toxicol; 2012 Jun; 88(6):990-6. PubMed ID: 22415647 [TBL] [Abstract][Full Text] [Related]
15. Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Johnson DB; Hallberg KB Sci Total Environ; 2005 Feb; 338(1-2):81-93. PubMed ID: 15680629 [TBL] [Abstract][Full Text] [Related]
16. Toxicity identification in metal plating effluent: implications in establishing effluent discharge limits using bioassays in Korea. Kim E; Jun YR; Jo HJ; Shim SB; Jung J Mar Pollut Bull; 2008; 57(6-12):637-44. PubMed ID: 18406429 [TBL] [Abstract][Full Text] [Related]
17. A screening method for toxicity identification evaluation on an industrial effluent using Chelex-100 resin and chelators for specific metals. Onikura N; Kishi K; Nakamura A; Takeuchi S Environ Toxicol Chem; 2008 Feb; 27(2):266-71. PubMed ID: 18348643 [TBL] [Abstract][Full Text] [Related]
18. A comparative study of toxicity identification using Daphnia magna and Tigriopus japonicus: implications of establishing effluent discharge limits in Korea. Kang SW; Seo J; Han J; Lee JS; Jung J Mar Pollut Bull; 2011; 63(5-12):370-5. PubMed ID: 21172718 [TBL] [Abstract][Full Text] [Related]
19. [Toxicity identification evaluation on efficiency of chemical effluent treatment]. Yang Y; Yu H; Cui Y; Jin H; Tang S; Zhou C Ying Yong Sheng Tai Xue Bao; 2003 Jan; 14(1):105-9. PubMed ID: 12722450 [TBL] [Abstract][Full Text] [Related]
20. Effects of hydraulic retention time (HRT) and sludge retention time (SRT) on the treatment of nitrobenzene in AMBR/CSTR reactor systems. Kuscu OS; Sponza DT Environ Technol; 2007 Mar; 28(3):285-96. PubMed ID: 17432381 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]