BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 18290729)

  • 21. The anti-proliferative effects of 1alpha,25(OH)2D3 on breast and prostate cancer cells are associated with induction of BRCA1 gene expression.
    Campbell MJ; Gombart AF; Kwok SH; Park S; Koeffler HP
    Oncogene; 2000 Oct; 19(44):5091-7. PubMed ID: 11042697
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A genomic perspective on vitamin D signaling.
    Carlberg C; Seuter S
    Anticancer Res; 2009 Sep; 29(9):3485-93. PubMed ID: 19667142
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The TGFbeta/Smad 3-signaling pathway is involved in butyrate-mediated vitamin D receptor (VDR)-expression.
    Daniel C; Schroder O; Zahn N; Gaschott T; Steinhilber D; Stein JM
    J Cell Biochem; 2007 Dec; 102(6):1420-31. PubMed ID: 17471513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seasonal and geographical variations in lung cancer prognosis in Norway. Does Vitamin D from the sun play a role?
    Porojnicu AC; Robsahm TE; Dahlback A; Berg JP; Christiani D; Bruland OS; Moan J
    Lung Cancer; 2007 Mar; 55(3):263-70. PubMed ID: 17207891
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Androgen receptor signaling and vitamin D receptor action in prostate cancer cells.
    Murthy S; Agoulnik IU; Weigel NL
    Prostate; 2005 Sep; 64(4):362-72. PubMed ID: 15754350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vitamin D regulates the phenotype of human breast cancer cells.
    Pendás-Franco N; González-Sancho JM; Suárez Y; Aguilera O; Steinmeyer A; Gamallo C; Berciano MT; Lafarga M; Muñoz A
    Differentiation; 2007 Mar; 75(3):193-207. PubMed ID: 17288543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands.
    Jurutka PW; Bartik L; Whitfield GK; Mathern DR; Barthel TK; Gurevich M; Hsieh JC; Kaczmarska M; Haussler CA; Haussler MR
    J Bone Miner Res; 2007 Dec; 22 Suppl 2():V2-10. PubMed ID: 18290715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dissociation of growth arrest and CYP24 induction by VDR ligands in mammary tumor cells.
    Valrance ME; Brunet AH; Acosta A; Welsh J
    J Cell Biochem; 2007 Aug; 101(6):1505-19. PubMed ID: 17286279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mammary epithelial cell transformation is associated with deregulation of the vitamin D pathway.
    Kemmis CM; Welsh J
    J Cell Biochem; 2008 Nov; 105(4):980-8. PubMed ID: 18767073
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of mammary tumor cell lines from wild type and vitamin D3 receptor knockout mice.
    Zinser GM; McEleney K; Welsh J
    Mol Cell Endocrinol; 2003 Feb; 200(1-2):67-80. PubMed ID: 12644300
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The vitamin D receptor is involved in the regulation of human breast cancer cell growth via a ligand-independent function in cytoplasm.
    Trivedi T; Zheng Y; Fournier PGJ; Murthy S; John S; Schillo S; Dunstan CR; Mohammad KS; Zhou H; Seibel MJ; Guise TA
    Oncotarget; 2017 Apr; 8(16):26687-26701. PubMed ID: 28460457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Breast cancer survivors and vitamin D: a review.
    Hines SL; Jorn HK; Thompson KM; Larson JM
    Nutrition; 2010 Mar; 26(3):255-62. PubMed ID: 20004077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accelerated mammary gland development during pregnancy and delayed postlactational involution in vitamin D3 receptor null mice.
    Zinser GM; Welsh J
    Mol Endocrinol; 2004 Sep; 18(9):2208-23. PubMed ID: 15178742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic vitamin D signaling in breast cancer: Insights from animal models and human cells.
    Matthews D; LaPorta E; Zinser GM; Narvaez CJ; Welsh J
    J Steroid Biochem Mol Biol; 2010 Jul; 121(1-2):362-7. PubMed ID: 20412854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vitamin D receptor-dependent inhibition of mammary tumor growth by EB1089 and ultraviolet radiation in vivo.
    Valrance ME; Brunet AH; Welsh J
    Endocrinology; 2007 Oct; 148(10):4887-94. PubMed ID: 17628009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vitamin D-3 receptor as a target for breast cancer prevention.
    Welsh J; Wietzke JA; Zinser GM; Byrne B; Smith K; Narvaez CJ
    J Nutr; 2003 Jul; 133(7 Suppl):2425S-2433S. PubMed ID: 12840219
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions.
    Lopes N; Sousa B; Martins D; Gomes M; Vieira D; Veronese LA; Milanezi F; Paredes J; Costa JL; Schmitt F
    BMC Cancer; 2010 Sep; 10():483. PubMed ID: 20831823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vitamin D and the mammary gland: a review on its role in normal development and breast cancer.
    Lopes N; Paredes J; Costa JL; Ylstra B; Schmitt F
    Breast Cancer Res; 2012 May; 14(3):211. PubMed ID: 22676419
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Down-regulation of vitamin D receptor in mammospheres: implications for vitamin D resistance in breast cancer and potential for combination therapy.
    Pervin S; Hewison M; Braga M; Tran L; Chun R; Karam A; Chaudhuri G; Norris K; Singh R
    PLoS One; 2013; 8(1):e53287. PubMed ID: 23341935
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Loss of vitamin D receptor signaling from the mammary epithelium or adipose tissue alters pubertal glandular development.
    Johnson AL; Zinser GM; Waltz SE
    Am J Physiol Endocrinol Metab; 2014 Oct; 307(8):E674-85. PubMed ID: 25139050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.