These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18291047)

  • 1. Performance analysis of the Flutter VRP1 under different flows and angles.
    Alves LA; Pitta F; Brunetto AF
    Respir Care; 2008 Mar; 53(3):316-23. PubMed ID: 18291047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance comparison of two oscillating positive expiratory pressure devices: Acapella versus Flutter.
    Volsko TA; DiFiore J; Chatburn RL
    Respir Care; 2003 Feb; 48(2):124-30. PubMed ID: 12556253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of Flutter®VRP1 components on mucus transport of patients with bronchiectasis.
    Tambascio J; de Souza LT; Lisboa RM; Passarelli Rde C; de Souza HC; Gastaldi AC
    Respir Med; 2011 Sep; 105(9):1316-21. PubMed ID: 21641196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory evaluation of the Acapella device: pressure characteristics under different conditions, and a software tool to optimize its practical use.
    Alves Silva CE; Santos JG; Jansen JM; de Melo PL
    Respir Care; 2009 Nov; 54(11):1480-7. PubMed ID: 19863832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical behaviors of Flutter VRP1, Shaker, and Acapella devices.
    dos Santos AP; Guimarães RC; de Carvalho EM; Gastaldi AC
    Respir Care; 2013 Feb; 58(2):298-304. PubMed ID: 22906833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pressures and Oscillation Frequencies Generated by Bubble-Positive Expiratory Pressure Devices.
    Santos MD; Milross MA; Eisenhuth JP; Alison JA
    Respir Care; 2017 Apr; 62(4):444-450. PubMed ID: 28143962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the Performance Characteristics of Different Positive Expiratory Pressure Devices.
    Franks LJ; Walsh JR; Hall K; Jacuinde G; Yerkovich S; Morris NR
    Respir Care; 2019 Apr; 64(4):434-444. PubMed ID: 30670668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological effects of vibration in subjects with cystic fibrosis.
    McCarren B; Alison JA
    Eur Respir J; 2006 Jun; 27(6):1204-9. PubMed ID: 16455834
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The value of conducting laboratory investigations on airway clearance devices.
    Volsko TA
    Respir Care; 2008 Mar; 53(3):311-3. PubMed ID: 18291045
    [No Abstract]   [Full Text] [Related]  

  • 10. Evaluation of Functional Characteristics of 4 Oscillatory Positive Pressure Devices in a Simulated Cystic Fibrosis Model.
    Van Fleet H; Dunn DK; McNinch NL; Volsko TA
    Respir Care; 2017 Apr; 62(4):451-458. PubMed ID: 28292973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of 6 Oscillatory Positive Expiratory Pressure Devices During Active Expiratory Flow.
    Poncin W; Reychler G; Liistro M; Liistro G
    Respir Care; 2020 Apr; 65(4):492-499. PubMed ID: 31744866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological responses to positive expiratory pressure breathing: a comparison of the PEP bottle and the PEP mask.
    Sehlin M; Ohberg F; Johansson G; Winsö O
    Respir Care; 2007 Aug; 52(8):1000-5. PubMed ID: 17650355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laboratory evaluation of four different devices for secretion mobilization: Acapella choice, green and blue versus water bottle.
    Mueller G; Bersch-Porada I; Koch-Borner S; Raab AM; Jonker M; Baumberger M; Michel F
    Respir Care; 2014 May; 59(5):673-7. PubMed ID: 24046459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of settings used for high-frequency chest-wall compression in cystic fibrosis.
    Kempainen RR; Milla C; Dunitz J; Savik K; Hazelwood A; Williams C; Rubin BK; Billings JL
    Respir Care; 2010 Jun; 55(6):695-701. PubMed ID: 20507651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimum design parameters for a therapist-constructed positive-expiratory-pressure therapy bottle device.
    Mestriner RG; Fernandes RO; Steffen LC; Donadio MV
    Respir Care; 2009 Apr; 54(4):504-8. PubMed ID: 19327187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flutter-VRP1 Desitin--a new physiotherapeutic device for the treatment of chronic obstructive bronchitis.
    Leru P; Bistriceanu G; Ibraim E; Stoicescu P
    Rom J Intern Med; 1994; 32(4):315-20. PubMed ID: 7613505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tubing internal diameter affects the pressures and oscillation frequencies generated by the therapist-made bubble-positive expiratory pressure device.
    Santos MD; Milross MA; Eisenhuth JP; Alison JA
    Physiother Theory Pract; 2020 Feb; 36(2):333-339. PubMed ID: 29897304
    [No Abstract]   [Full Text] [Related]  

  • 18. Four methods of measuring tidal volume during high-frequency oscillatory ventilation.
    Hager DN; Fuld M; Kaczka DW; Fessler HE; Brower RG; Simon BA
    Crit Care Med; 2006 Mar; 34(3):751-7. PubMed ID: 16505661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-frequency assisted airway clearance.
    Chatburn RL
    Respir Care; 2007 Sep; 52(9):1224-35; discussion 1235-7. PubMed ID: 17716388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The flutter device and expiratory pressures.
    Brooks D; Newbold E; Kozar LF; Rivera M
    J Cardiopulm Rehabil; 2002; 22(1):53-7. PubMed ID: 11839998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.