BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

753 related articles for article (PubMed ID: 18291317)

  • 1. An engineered protein tag for multiprotein labeling in living cells.
    Gautier A; Juillerat A; Heinis C; Corrêa IR; Kindermann M; Beaufils F; Johnsson K
    Chem Biol; 2008 Feb; 15(2):128-36. PubMed ID: 18291317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering substrate specificity of O6-alkylguanine-DNA alkyltransferase for specific protein labeling in living cells.
    Juillerat A; Heinis C; Sielaff I; Barnikow J; Jaccard H; Kunz B; Terskikh A; Johnsson K
    Chembiochem; 2005 Jul; 6(7):1263-9. PubMed ID: 15934048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific, covalent labeling of recombinant antibody fragments via fusion to an engineered version of 6-O-alkylguanine DNA alkyltransferase.
    Kampmeier F; Ribbert M; Nachreiner T; Dembski S; Beaufils F; Brecht A; Barth S
    Bioconjug Chem; 2009 May; 20(5):1010-5. PubMed ID: 19388673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent labeling of COS-7 expressing SNAP-tag fusion proteins for live cell imaging.
    Provost CR; Sun L
    J Vis Exp; 2010 May; (39):. PubMed ID: 20485262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Fluorescent Reporter for Single Cell Analysis of Gene Expression in Clostridium difficile.
    Cassona CP; Pereira F; Serrano M; Henriques AO
    Methods Mol Biol; 2016; 1476():69-90. PubMed ID: 27507334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of two novel tag-based labelling technologies for site-specific modification of proteins.
    Tirat A; Freuler F; Stettler T; Mayr LM; Leder L
    Int J Biol Macromol; 2006 Aug; 39(1-3):66-76. PubMed ID: 16503347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of SNAP-tag fluorogenic probes for wash-free fluorescence imaging.
    Sun X; Zhang A; Baker B; Sun L; Howard A; Buswell J; Maurel D; Masharina A; Johnsson K; Noren CJ; Xu MQ; Corrêa IR
    Chembiochem; 2011 Sep; 12(14):2217-26. PubMed ID: 21793150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benzylguanine thiol self-assembled monolayers for the immobilization of SNAP-tag proteins on microcontact-printed surface structures.
    Engin S; Trouillet V; Franz CM; Welle A; Bruns M; Wedlich D
    Langmuir; 2010 May; 26(9):6097-101. PubMed ID: 20369837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of SNAP-tag-mediated live cell labeling as an alternative to GFP in Porphyromonas gingivalis.
    Nicolle O; Rouillon A; Guyodo H; Tamanai-Shacoori Z; Chandad F; Meuric V; Bonnaure-Mallet M
    FEMS Immunol Med Microbiol; 2010 Aug; 59(3):357-63. PubMed ID: 20482622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Releasable SNAP-tag probes for studying endocytosis and recycling.
    Cole NB; Donaldson JG
    ACS Chem Biol; 2012 Mar; 7(3):464-9. PubMed ID: 22216966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capturing Cell-Cell Interactions via SNAP-tag and CLIP-tag Technology.
    Hoehnel S; Lutolf MP
    Bioconjug Chem; 2015 Aug; 26(8):1678-86. PubMed ID: 26079967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chromophore-assisted laser inactivation of alpha- and gamma-tubulin SNAP-tag fusion proteins inside living cells.
    Keppler A; Ellenberg J
    ACS Chem Biol; 2009 Feb; 4(2):127-38. PubMed ID: 19191588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of bifunctional probes for the specific labeling of fusion proteins.
    Kindermann M; Sielaff I; Johnsson K
    Bioorg Med Chem Lett; 2004 Jun; 14(11):2725-8. PubMed ID: 15125922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring in vivo protein half-life.
    Bojkowska K; Santoni de Sio F; Barde I; Offner S; Verp S; Heinis C; Johnsson K; Trono D
    Chem Biol; 2011 Jun; 18(6):805-15. PubMed ID: 21700215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific protein labeling with SNAP-tags.
    Cole NB
    Curr Protoc Protein Sci; 2013 Sep; 73():30.1.1-30.1.16. PubMed ID: 24510614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study of the repair enzyme O6-alkylguanine-DNA-alkyltransferase presence in mammalian cells in vitro].
    Lylo VV; Man'ko VH; Nemazanyĭ IO; Kovalenko OO; Matsevych LL; Lukash LL
    Tsitol Genet; 2004; 38(6):67-70. PubMed ID: 15882038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed evolution of O6-alkylguanine-DNA alkyltransferase for applications in protein labeling.
    Gronemeyer T; Chidley C; Juillerat A; Heinis C; Johnsson K
    Protein Eng Des Sel; 2006 Jul; 19(7):309-16. PubMed ID: 16638797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of a thermophilic O
    Rossi F; Morrone C; Massarotti A; Ferraris DM; Valenti A; Perugino G; Miggiano R
    Biochem Biophys Res Commun; 2018 Jun; 500(3):698-703. PubMed ID: 29684348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expanding the substrate selectivity of SNAP/CLIP-tagging of intracellular targets.
    Macias-Contreras M; Little KN; Zhu L
    Methods Enzymol; 2020; 638():233-257. PubMed ID: 32416915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A concise synthesis of the Pennsylvania Green fluorophore and labeling of intracellular targets with O6-benzylguanine derivatives.
    Mottram LF; Maddox E; Schwab M; Beaufils F; Peterson BR
    Org Lett; 2007 Sep; 9(19):3741-4. PubMed ID: 17705395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.