BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 18291367)

  • 1. Xenopus laevis P23H rhodopsin transgene causes rod photoreceptor degeneration that is more severe in the ventral retina and is modulated by light.
    Zhang R; Oglesby E; Marsh-Armstrong N
    Exp Eye Res; 2008 Apr; 86(4):612-21. PubMed ID: 18291367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dark rearing rescues P23H rhodopsin-induced retinal degeneration in a transgenic Xenopus laevis model of retinitis pigmentosa: a chromophore-dependent mechanism characterized by production of N-terminally truncated mutant rhodopsin.
    Tam BM; Moritz OL
    J Neurosci; 2007 Aug; 27(34):9043-53. PubMed ID: 17715341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dysmorphic photoreceptors in a P23H mutant rhodopsin model of retinitis pigmentosa are metabolically active and capable of regenerating to reverse retinal degeneration.
    Lee DC; Vazquez-Chona FR; Ferrell WD; Tam BM; Jones BW; Marc RE; Moritz OL
    J Neurosci; 2012 Feb; 32(6):2121-8. PubMed ID: 22323724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autophagy in
    Wen RH; Stanar P; Tam B; Moritz OL
    Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disrupted Plasma Membrane Protein Homeostasis in a
    Ropelewski P; Imanishi Y
    J Neurosci; 2019 Jul; 39(28):5581-5593. PubMed ID: 31061086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of rhodopsin P23H-induced retinal degeneration in a Xenopus laevis model of retinitis pigmentosa.
    Tam BM; Moritz OL
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3234-41. PubMed ID: 16877386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light Induces Ultrastructural Changes in Rod Outer and Inner Segments, Including Autophagy, in a Transgenic Xenopus laevis P23H Rhodopsin Model of Retinitis Pigmentosa.
    Bogéa TH; Wen RH; Moritz OL
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):7947-55. PubMed ID: 26720441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The severe autosomal dominant retinitis pigmentosa rhodopsin mutant Ter349Glu mislocalizes and induces rapid rod cell death.
    Hollingsworth TJ; Gross AK
    J Biol Chem; 2013 Oct; 288(40):29047-55. PubMed ID: 23940033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration.
    Viringipurampeer IA; Gregory-Evans CY; Metcalfe AL; Bashar E; Moritz OL; Gregory-Evans K
    Mol Neurobiol; 2019 Mar; 56(3):1637-1652. PubMed ID: 29911255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of AAV-Mediated Rhodopsin Gene Augmentation on Retinal Degeneration Caused by the Dominant P23H Rhodopsin Mutation in a Knock-In Murine Model.
    Orlans HO; Barnard AR; Patrício MI; McClements ME; MacLaren RE
    Hum Gene Ther; 2020 Jul; 31(13-14):730-742. PubMed ID: 32394751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoactivation-induced instability of rhodopsin mutants T4K and T17M in rod outer segments underlies retinal degeneration in X. laevis transgenic models of retinitis pigmentosa.
    Tam BM; Noorwez SM; Kaushal S; Kono M; Moritz OL
    J Neurosci; 2014 Oct; 34(40):13336-48. PubMed ID: 25274813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9-Mediated Models of Retinitis Pigmentosa Reveal Differential Proliferative Response of Müller Cells between
    Parain K; Lourdel S; Donval A; Chesneau A; Borday C; Bronchain O; Locker M; Perron M
    Cells; 2022 Feb; 11(5):. PubMed ID: 35269429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Pro23His mutation alters prenatal rod photoreceptor morphology in a transgenic swine model of retinitis pigmentosa.
    Scott PA; Fernandez de Castro JP; Kaplan HJ; McCall MA
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2452-9. PubMed ID: 24618321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The heat-shock response co-inducer arimoclomol protects against retinal degeneration in rhodopsin retinitis pigmentosa.
    Parfitt DA; Aguila M; McCulley CH; Bevilacqua D; Mendes HF; Athanasiou D; Novoselov SS; Kanuga N; Munro PM; Coffey PJ; Kalmar B; Greensmith L; Cheetham ME
    Cell Death Dis; 2014 May; 5(5):e1236. PubMed ID: 24853414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal degeneration in humanized mice expressing mutant rhodopsin under the control of the endogenous murine promoter.
    Liu X; Jia R; Meng X; Li Y; Yang L
    Exp Eye Res; 2022 Feb; 215():108893. PubMed ID: 34919893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic in vivo quantification of rod photoreceptor degeneration using fluorescent reporter mouse models of retinitis pigmentosa.
    Orlans HO; Barnard AR; MacLaren RE
    Exp Eye Res; 2020 Jan; 190():107895. PubMed ID: 31816293
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Opposing Effects of Valproic Acid Treatment Mediated by Histone Deacetylase Inhibitor Activity in Four Transgenic
    Vent-Schmidt RYJ; Wen RH; Zong Z; Chiu CN; Tam BM; May CG; Moritz OL
    J Neurosci; 2017 Jan; 37(4):1039-1054. PubMed ID: 28490005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhodopsin mutant P23H destabilizes rod photoreceptor disk membranes.
    Haeri M; Knox BE
    PLoS One; 2012; 7(1):e30101. PubMed ID: 22276148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early loss of synaptic protein PSD-95 from rod terminals of rhodopsin P347L transgenic porcine retina.
    Blackmon SM; Peng YW; Hao Y; Moon SJ; Oliveira LB; Tatebayashi M; Petters RM; Wong F
    Brain Res; 2000 Dec; 885(1):53-61. PubMed ID: 11121529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cone degeneration following rod ablation in a reversible model of retinal degeneration.
    Choi RY; Engbretson GA; Solessio EC; Jones GA; Coughlin A; Aleksic I; Zuber ME
    Invest Ophthalmol Vis Sci; 2011 Jan; 52(1):364-73. PubMed ID: 20720220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.