These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Effects of grass silage and soybean meal supplementation on milk production and milk fatty acid profiles of grazing dairy cows. Rego OA; Regalo SM; Rosa HJ; Alves SP; Borba AE; Bessa RJ; Cabrita AR; Fonseca AJ J Dairy Sci; 2008 Jul; 91(7):2736-43. PubMed ID: 18565932 [TBL] [Abstract][Full Text] [Related]
5. Evidence for the inhibition of the terminal step of ruminal alpha-linolenic acid biohydrogenation by condensed tannins. Khiaosa-Ard R; Bryner SF; Scheeder MR; Wettstein HR; Leiber F; Kreuzer M; Soliva CR J Dairy Sci; 2009 Jan; 92(1):177-88. PubMed ID: 19109277 [TBL] [Abstract][Full Text] [Related]
6. In vitro response to EPA, DPA, and DHA: Comparison of effects on ruminal fermentation and biohydrogenation of 18-carbon fatty acids in cows and ewes. Toral PG; Hervás G; Carreño D; Leskinen H; Belenguer A; Shingfield KJ; Frutos P J Dairy Sci; 2017 Aug; 100(8):6187-6198. PubMed ID: 28601459 [TBL] [Abstract][Full Text] [Related]
7. Starch and oil in the donor cow diet and starch in substrate differently affect the in vitro ruminal biohydrogenation of linoleic and linolenic acids. Zened A; Troegeler-Meynadier A; Nicot MC; Combes S; Cauquil L; Farizon Y; Enjalbert F J Dairy Sci; 2011 Nov; 94(11):5634-45. PubMed ID: 22032386 [TBL] [Abstract][Full Text] [Related]
8. Effect of pH and level of concentrate in the diet on the production of biohydrogenation intermediates in a dual-flow continuous culture. Fuentes MC; Calsamiglia S; Cardozo PW; Vlaeminck B J Dairy Sci; 2009 Sep; 92(9):4456-66. PubMed ID: 19700707 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the disappearance and formation of biohydrogenation intermediates during incubations of linoleic acid with rumen fluid in vitro. Honkanen AM; Griinari JM; Vanhatalo A; Ahvenjärvi S; Toivonen V; Shingfield KJ J Dairy Sci; 2012 Mar; 95(3):1376-94. PubMed ID: 22365221 [TBL] [Abstract][Full Text] [Related]
10. Prevotella bryantii 25A used as a probiotic in early-lactation dairy cows: effect on ruminal fermentation characteristics, milk production, and milk composition. Chiquette J; Allison MJ; Rasmussen MA J Dairy Sci; 2008 Sep; 91(9):3536-43. PubMed ID: 18765612 [TBL] [Abstract][Full Text] [Related]
11. Short communication: The effect of substituting fish oil in dairy cow diets with docosahexaenoic acid-micro algae on milk composition and fatty acids profile. Abughazaleh AA; Potu RB; Ibrahim S J Dairy Sci; 2009 Dec; 92(12):6156-9. PubMed ID: 19923618 [TBL] [Abstract][Full Text] [Related]
12. Interaction of molasses and monensin in alfalfa hay- or corn silage-based diets on rumen fermentation, total tract digestibility, and milk production by Holstein cows. Oelker ER; Reveneau C; Firkins JL J Dairy Sci; 2009 Jan; 92(1):270-85. PubMed ID: 19109286 [TBL] [Abstract][Full Text] [Related]
13. The effect of absence of protozoa on rumen biohydrogenation and the fatty acid composition of lamb muscle. Yáñez-Ruiz DR; Williams S; Newbold CJ Br J Nutr; 2007 May; 97(5):938-48. PubMed ID: 17381978 [TBL] [Abstract][Full Text] [Related]
14. Biohydrogenation of dietary n-3 PUFA and stability of ingested vitamin E in the rumen, and their effects on microbial activity in sheep. Chikunya S; Demirel G; Enser M; Wood JD; Wilkinson RG; Sinclair LA Br J Nutr; 2004 Apr; 91(4):539-50. PubMed ID: 15035681 [TBL] [Abstract][Full Text] [Related]
15. Disappearance of docosahexaenoic and eicosapentaenoic acids from cultures of mixed ruminal microorganisms. AbuGhazaleh AA; Jenkins TC J Dairy Sci; 2004 Mar; 87(3):645-51. PubMed ID: 15202649 [TBL] [Abstract][Full Text] [Related]
16. Docosahexaenoic acid elevates trans-18:1 isomers but is not directly converted into trans-18:1 isomers in ruminal batch cultures. Klein CM; Jenkins TC J Dairy Sci; 2011 Sep; 94(9):4676-83. PubMed ID: 21854940 [TBL] [Abstract][Full Text] [Related]
17. Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Wasowska I; Maia MR; Niedźwiedzka KM; Czauderna M; Ribeiro JM; Devillard E; Shingfield KJ; Wallace RJ Br J Nutr; 2006 Jun; 95(6):1199-211. PubMed ID: 16768845 [TBL] [Abstract][Full Text] [Related]
18. Fatty acid profiles associated with microbial colonization of freshly ingested grass and rumen biohydrogenation. Kim EJ; Sanderson R; Dhanoa MS; Dewhurst RJ J Dairy Sci; 2005 Sep; 88(9):3220-30. PubMed ID: 16107412 [TBL] [Abstract][Full Text] [Related]
19. In vitro study of dietary factors affecting the biohydrogenation shift from trans-11 to trans-10 fatty acids in the rumen of dairy cows. Zened A; Enjalbert F; Nicot MC; Troegeler-Meynadier A Animal; 2012 Mar; 6(3):459-67. PubMed ID: 22436225 [TBL] [Abstract][Full Text] [Related]
20. Rates and efficiencies of reactions of ruminal biohydrogenation of linoleic acid according to pH and polyunsaturated fatty acids concentrations. Troegeler-Meynadier A; Bret-Bennis L; Enjalbert F Reprod Nutr Dev; 2006; 46(6):713-24. PubMed ID: 17169317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]