These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 18292341)
41. Experimental and steady-state analysis of the GAL regulatory system in Kluyveromyces lactis. Pannala VR; Bhartiya S; Venkatesh KV FEBS J; 2010 Jul; 277(14):2987-3002. PubMed ID: 20528923 [TBL] [Abstract][Full Text] [Related]
42. Assigning function to natural allelic variation via dynamic modeling of gene network induction. Richard M; Chuffart F; Duplus-Bottin H; Pouyet F; Spichty M; Fulcrand E; Entrevan M; Barthelaix A; Springer M; Jost D; Yvert G Mol Syst Biol; 2018 Jan; 14(1):e7803. PubMed ID: 29335276 [TBL] [Abstract][Full Text] [Related]
43. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae. Johnston M; Flick JS; Pexton T Mol Cell Biol; 1994 Jun; 14(6):3834-41. PubMed ID: 8196626 [TBL] [Abstract][Full Text] [Related]
44. The insertion of two amino acids into a transcriptional inducer converts it into a galactokinase. Platt A; Ross HC; Hankin S; Reece RJ Proc Natl Acad Sci U S A; 2000 Mar; 97(7):3154-9. PubMed ID: 10737789 [TBL] [Abstract][Full Text] [Related]
45. GAL regulon of Saccharomyces cerevisiae performs optimally to maximize growth on galactose. Malakar P; Venkatesh KV FEMS Yeast Res; 2014 Mar; 14(2):346-56. PubMed ID: 24206532 [TBL] [Abstract][Full Text] [Related]
46. SAGA is an essential in vivo target of the yeast acidic activator Gal4p. Bhaumik SR; Green MR Genes Dev; 2001 Aug; 15(15):1935-45. PubMed ID: 11485988 [TBL] [Abstract][Full Text] [Related]
47. The GAL genetic switch: visualisation of the interacting proteins by split-EGFP bimolecular fluorescence complementation. Barnard E; Timson DJ J Basic Microbiol; 2011 Jun; 51(3):312-7. PubMed ID: 21298679 [TBL] [Abstract][Full Text] [Related]
48. Stochastic analysis of the GAL genetic switch in Saccharomyces cerevisiae: modeling and experiments reveal hierarchy in glucose repression. Prasad V; Venkatesh KV BMC Syst Biol; 2008 Nov; 2():97. PubMed ID: 19014615 [TBL] [Abstract][Full Text] [Related]
49. Phosphorylation of Ga14p at a single C-terminal residue is necessary for galactose-inducible transcription. Sadowski I; Costa C; Dhanawansa R Mol Cell Biol; 1996 Sep; 16(9):4879-87. PubMed ID: 8756647 [TBL] [Abstract][Full Text] [Related]
50. How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose. Polish JA; Kim JH; Johnston M Genetics; 2005 Feb; 169(2):583-94. PubMed ID: 15489524 [TBL] [Abstract][Full Text] [Related]
51. Vectors for N- or C-terminal positioning of the yeast Gal4p DNA binding or activator domains. Millson SH; Truman AW; Piper PW Biotechniques; 2003 Jul; 35(1):60-4. PubMed ID: 12866406 [No Abstract] [Full Text] [Related]
52. Enhancement of catabolite regulatory genes in Saccharomyces cerevisiae to increase ethanol production using hydrolysate from red seaweed Gloiopeltis furcata. Park YR; Yang JW; Sunwoo IY; Jang BK; Kim SR; Jeong GT; Kim SK J Biotechnol; 2021 Jun; 333():1-9. PubMed ID: 33878391 [TBL] [Abstract][Full Text] [Related]
53. Regulated phosphorylation of the Gal4p inhibitor Gal80p of Kluyveromyces lactis revealed by mutational analysis. Zenke FT; Kapp L; Breunig KD Biol Chem; 1999 Apr; 380(4):419-30. PubMed ID: 10355628 [TBL] [Abstract][Full Text] [Related]
54. Expression of GAL genes in a mutant strain of Saccharomyces cerevisiae lacking GAL80: quantitative model and experimental verification. Verma M; Bhat PJ; Venkatesh KV Biotechnol Appl Biochem; 2004 Feb; 39(Pt 1):89-97. PubMed ID: 12927024 [TBL] [Abstract][Full Text] [Related]
55. The dimerization/repression domain of RFX1 is related to a conserved region of its yeast homologues Crt1 and Sak1: a new function for an ancient motif. Katan-Khaykovich Y; Spiegel I; Shaul Y J Mol Biol; 1999 Nov; 294(1):121-37. PubMed ID: 10556033 [TBL] [Abstract][Full Text] [Related]
56. Autoregulation of regulatory proteins is key for dynamic operation of GAL switch in Saccharomyces cerevisiae. Ruhela A; Verma M; Edwards JS; Bhat PJ; Bhartiya S; Venkatesh KV FEBS Lett; 2004 Oct; 576(1-2):119-26. PubMed ID: 15474022 [TBL] [Abstract][Full Text] [Related]
57. Computational analysis of GAL pathway pinpoints mechanisms underlying natural variation. Hong J; Palme J; Hua B; Springer M PLoS Comput Biol; 2021 Sep; 17(9):e1008691. PubMed ID: 34570755 [TBL] [Abstract][Full Text] [Related]
58. Substrate specificity and mechanism from the structure of Pyrococcus furiosus galactokinase. Hartley A; Glynn SE; Barynin V; Baker PJ; Sedelnikova SE; Verhees C; de Geus D; van der Oost J; Timson DJ; Reece RJ; Rice DW J Mol Biol; 2004 Mar; 337(2):387-98. PubMed ID: 15003454 [TBL] [Abstract][Full Text] [Related]
59. Gal80 dimerization and the yeast GAL gene switch. Pilauri V; Bewley M; Diep C; Hopper J Genetics; 2005 Apr; 169(4):1903-14. PubMed ID: 15695361 [TBL] [Abstract][Full Text] [Related]
60. Multiple Conformations of Gal3 Protein Drive the Galactose-Induced Allosteric Activation of the GAL Genetic Switch of Saccharomyces cerevisiae. Kar RK; Kharerin H; Padinhateeri R; Bhat PJ J Mol Biol; 2017 Jan; 429(1):158-176. PubMed ID: 27913116 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]