These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 18292886)

  • 1. Cholic acid-based fluorescent probes for enantioselective recognition of trifunctional amino acids.
    Wang H; Chan WH; Lee AW
    Org Biomol Chem; 2008 Mar; 6(5):929-34. PubMed ID: 18292886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent anion sensor derived from cholic acid: the use of flexible side chain.
    Fang L; Chan WH; He YB; Kwong DW; Lee AW
    J Org Chem; 2005 Sep; 70(19):7640-6. PubMed ID: 16149794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An enantioselective fluorescent sensor for sugar acids.
    Zhao J; Davidson MG; Mahon MF; Kociok-Köhn G; James TD
    J Am Chem Soc; 2004 Dec; 126(49):16179-86. PubMed ID: 15584754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective recognition of mandelic acid by a 3,6-dithiophen-2-yl-9H-carbazole-based chiral fluorescent bisboronic acid sensor.
    Wu Y; Guo H; James TD; Zhao J
    J Org Chem; 2011 Jul; 76(14):5685-95. PubMed ID: 21619028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, synthesis and photophysical studies of simple fluorescent anion PET sensors using charge neutral thiourea receptors.
    Gunnlaugsson T; Davis AP; Hussey GM; Tierney J; Glynn M
    Org Biomol Chem; 2004 Jul; 2(13):1856-63. PubMed ID: 15227537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A cholic acid-based fluorescent chemosenor for the detection of ATP.
    Wang H; Chan WH
    Org Biomol Chem; 2008 Jan; 6(1):162-8. PubMed ID: 18075662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An enantioselective fluorescence sensing assay for quantitative analysis of chiral carboxylic acids and amino acid derivatives.
    Wolf C; Liu S; Reinhardt BC
    Chem Commun (Camb); 2006 Oct; (40):4242-4. PubMed ID: 17031445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral recognition by fluorescent chemosensors based on N-dansyl-amino acid-modified cyclodextrins.
    Ikeda H; Li Q; Ueno A
    Bioorg Med Chem Lett; 2006 Oct; 16(20):5420-3. PubMed ID: 16890432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantioselective sensing of chiral carboxylic acids.
    Mei X; Wolf C
    J Am Chem Soc; 2004 Nov; 126(45):14736-7. PubMed ID: 15535695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of fluorescent beta-cyclodextrins for the enantioselective sensing of alpha-amino acids.
    Corradini R; Paganuzzi C; Marchelli R; Pagliari S; Sforza S; Dossena A; Galaverna G; Duchateau A
    Chirality; 2003; 15 Suppl():S30-9. PubMed ID: 12884372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chiral perazamacrocyclic fluorescent sensor for cascade recognition of Cu(II) and the unmodified α-amino acids in protic solutions.
    Yang X; Liu X; Shen K; Zhu C; Cheng Y
    Org Lett; 2011 Jul; 13(13):3510-3. PubMed ID: 21648428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral donor photoinduced-electron-transfer (d-PET) boronic acid chemosensors for the selective recognition of tartaric acids, disaccharides, and ginsenosides.
    Wu Y; Guo H; Zhang X; James TD; Zhao J
    Chemistry; 2011 Jun; 17(27):7632-44. PubMed ID: 21598323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A heteroditopic fluoroionophoric platform for constructing fluorescent probes with large dynamic ranges for zinc ions.
    Zhang L; Clark RJ; Zhu L
    Chemistry; 2008; 14(9):2894-903. PubMed ID: 18232042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enantioselective Recognition of Chiral Carboxylic Acids by a β-Amino Acid and 1,10-Phenanthroline Based Chiral Fluorescent Sensor.
    Zhang Y; Hu F; Wang B; Zhang X; Liu C
    Sensors (Basel); 2015 May; 15(5):10723-33. PubMed ID: 25954953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imidazolium-functionalized BINOL as a multifunctional receptor for chromogenic and chiral anion recognition.
    Lu QS; Dong L; Zhang J; Li J; Jiang L; Huang Y; Qin S; Hu CW; Yu XQ
    Org Lett; 2009 Feb; 11(3):669-72. PubMed ID: 19143512
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some applications of a chiral fluorometric reagent, (S)-TBMB carboxylic acid.
    Meguro H; Kim JH; Bai C; Nishida Y; Ohrui H
    Chirality; 2001 Aug; 13(8):441-5. PubMed ID: 11466766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A ratiometric TICT-type dual fluorescent sensor for an amino acid.
    Ito A; Ishizaka S; Kitamura N
    Phys Chem Chem Phys; 2010 Jul; 12(25):6641-9. PubMed ID: 20424794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholic-acid-based fluorescent sensor for dicarboxylates and acidic amino acids in aqueous solutions.
    Liu SY; Fang L; He YB; Chan WH; Yeung KT; Cheng YK; Yang RH
    Org Lett; 2005 Dec; 7(26):5825-8. PubMed ID: 16354076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel chiral terpyridine macrocycle as a fluorescent sensor for enantioselective recognition of amino acid derivatives.
    Wong WL; Huang KH; Teng PF; Lee CS; Kwong HL
    Chem Commun (Camb); 2004 Feb; (4):384-5. PubMed ID: 14765220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and use of fluorescent molecular probes for measuring cell-surface enzymatic oxidation of amino acids and amines in seawater.
    Pantoja S; Lee C; Marecek JF; Palenik BP
    Anal Biochem; 1993 Jun; 211(2):210-8. PubMed ID: 8317696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.