These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 18292910)

  • 61. A novel blue dye for near-IR 'dye-sensitised' solar cell applications.
    Burke A; Schmidt-Mende L; Ito S; Grätzel M
    Chem Commun (Camb); 2007 Jan; (3):234-6. PubMed ID: 17299623
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Interpretation of apparent activation energies for electron transport in dye-sensitized nanocrystalline solar cells.
    Peter LM; Walker AB; Boschloo G; Hagfeldt A
    J Phys Chem B; 2006 Jul; 110(28):13694-9. PubMed ID: 16836312
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells.
    Koops SE; O'Regan BC; Barnes PR; Durrant JR
    J Am Chem Soc; 2009 Apr; 131(13):4808-18. PubMed ID: 19334776
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Polymer solar cells based on very narrow-bandgap polyplatinynes with photocurrents extended into the near-infrared region.
    Wang XZ; Wong WY; Cheung KY; Fung MK; Djurisić AB; Chan WK
    Dalton Trans; 2008 Oct; (40):5484-94. PubMed ID: 19082032
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Chemical input and I-V output: stepwise chemical information processing in dye-sensitized solar cells.
    Satoh N; Han L
    Phys Chem Chem Phys; 2012 Dec; 14(46):16014-22. PubMed ID: 23104104
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons.
    Jennings JR; Ghicov A; Peter LM; Schmuki P; Walker AB
    J Am Chem Soc; 2008 Oct; 130(40):13364-72. PubMed ID: 18774820
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fermi energy level tuning for high performance dye sensitized solar cells using sp2 selective nitrogen-doped carbon nanotube channels.
    Lee GI; Nath NC; Sarker S; Shin WH; Ahammad AJ; Kang JK; Lee JJ
    Phys Chem Chem Phys; 2012 Apr; 14(15):5255-9. PubMed ID: 22402605
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Analysis of photovoltage decay transients in dye-sensitized solar cells.
    Walker AB; Peter LM; Lobato K; Cameron PJ
    J Phys Chem B; 2006 Dec; 110(50):25504-7. PubMed ID: 17165999
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Alternating polyfluorenes collect solar light in polymer photovoltaics.
    Inganäs O; Zhang F; Andersson MR
    Acc Chem Res; 2009 Nov; 42(11):1731-9. PubMed ID: 19835413
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Latent gel electrolyte precursors for quasi-solid dye sensitized solar cells.
    Kato T; Okazaki A; Hayase S
    Chem Commun (Camb); 2005 Jan; (3):363-5. PubMed ID: 15645038
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Interfacial electron-transfer kinetics in metal-free organic dye-sensitized solar cells: combined effects of molecular structure of dyes and electrolytes.
    Miyashita M; Sunahara K; Nishikawa T; Uemura Y; Koumura N; Hara K; Mori A; Abe T; Suzuki E; Mori S
    J Am Chem Soc; 2008 Dec; 130(52):17874-81. PubMed ID: 19067515
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of long-range ordered mesoporous TiO2 thin film.
    Kim YJ; Lee YH; Lee MH; Kim HJ; Pan JH; Lim GI; Choi YS; Kim K; Park NG; Lee C; Lee WI
    Langmuir; 2008 Nov; 24(22):13225-30. PubMed ID: 18922027
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Triphenylamine-based dyes bearing functionalized 3,4-propylenedioxythiophene linkers with enhanced performance for dye-sensitized solar cells.
    Liang Y; Peng B; Liang J; Tao Z; Chen J
    Org Lett; 2010 Mar; 12(6):1204-7. PubMed ID: 20170150
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage.
    O'Regan BC; Walley K; Juozapavicius M; Anderson A; Matar F; Ghaddar T; Zakeeruddin SM; Klein C; Durrant JR
    J Am Chem Soc; 2009 Mar; 131(10):3541-8. PubMed ID: 19275259
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Photovoltaic activity of Ti/MCM-41.
    Atienzar P; Navarro M; Corma A; Garcia H
    Chemphyschem; 2009 Jan; 10(1):252-6. PubMed ID: 18942692
    [TBL] [Abstract][Full Text] [Related]  

  • 77. "Sticky electrons" transport and interfacial transfer of electrons in the dye-sensitized solar cell.
    Peter L
    Acc Chem Res; 2009 Nov; 42(11):1839-47. PubMed ID: 19637905
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties.
    Liang Y; Feng D; Wu Y; Tsai ST; Li G; Ray C; Yu L
    J Am Chem Soc; 2009 Jun; 131(22):7792-9. PubMed ID: 19453105
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Tantalum-doped titanium dioxide nanowire arrays for dye-sensitized solar cells with high open-circuit voltage.
    Feng X; Shankar K; Paulose M; Grimes CA
    Angew Chem Int Ed Engl; 2009; 48(43):8095-8. PubMed ID: 19768821
    [No Abstract]   [Full Text] [Related]  

  • 80. New sensitizers for dye-sensitized solar cells featuring a carbon-bridged phenylenevinylene.
    Zhu X; Tsuji H; Yella A; Chauvin AS; Grätzel M; Nakamura E
    Chem Commun (Camb); 2013 Jan; 49(6):582-4. PubMed ID: 23212142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.