BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18293369)

  • 1. Self-assembled polyhydroxy fatty acids vesicles: a mechanism for plant cutin synthesis.
    Heredia-Guerrero JA; Benítez JJ; Heredia A
    Bioessays; 2008 Mar; 30(3):273-7. PubMed ID: 18293369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Cutinsomes in Plant Cuticle Formation.
    Stępiński D; Kwiatkowska M; Wojtczak A; Polit JT; Domínguez E; Heredia A; Popłońska K
    Cells; 2020 Jul; 9(8):. PubMed ID: 32722473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Building lipid barriers: biosynthesis of cutin and suberin.
    Pollard M; Beisson F; Li Y; Ohlrogge JB
    Trends Plant Sci; 2008 May; 13(5):236-46. PubMed ID: 18440267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The biosynthesis of cutin and suberin as an alternative source of enzymes for the production of bio-based chemicals and materials.
    Li Y; Beisson F
    Biochimie; 2009 Jun; 91(6):685-91. PubMed ID: 19344744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving the puzzles of cutin and suberin polymer biosynthesis.
    Beisson F; Li-Beisson Y; Pollard M
    Curr Opin Plant Biol; 2012 Jun; 15(3):329-37. PubMed ID: 22465132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cutinsomes and lipotubuloids appear to participate in cuticle formation in Ornithogalum umbellatum ovary epidermis: EM-immunogold research.
    Kwiatkowska M; Wojtczak A; Popłońska K; Polit JT; Stępiński D; Domίnguez E; Heredia A
    Protoplasma; 2014 Sep; 251(5):1151-61. PubMed ID: 24627134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cutinsomes and cuticle enzymes GPAT6 and DGAT2 seem to travel together from a lipotubuloid metabolon (LM) to extracellular matrix of O. umbellatum ovary epidermis.
    Stępiński D; Kwiatkowska M; Popłońska K; Polit JT; Wojtczak A; Domίnguez E; Heredia A
    Micron; 2016 Jun; 85():51-7. PubMed ID: 27088229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis.
    Lü S; Song T; Kosma DK; Parsons EP; Rowland O; Jenks MA
    Plant J; 2009 Aug; 59(4):553-64. PubMed ID: 19392700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fruit cuticle lipid composition and water loss in a diverse collection of pepper (Capsicum).
    Parsons EP; Popopvsky S; Lohrey GT; Alkalai-Tuvia S; Perzelan Y; Bosland P; Bebeli PJ; Paran I; Fallik E; Jenks MA
    Physiol Plant; 2013 Oct; 149(2):160-74. PubMed ID: 23496056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of polyhydroxy fatty acid nanoparticles related to plant lipid biopolyesters.
    Heredia-Guerrero JA; Domínguez E; Luna M; Benítez JJ; Heredia A
    Chem Phys Lipids; 2010 Mar; 163(3):329-33. PubMed ID: 20123090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cutinsomes and CUTIN SYNTHASE1 Function Sequentially in Tomato Fruit Cutin Deposition.
    Segado P; Heredia-Guerrero JA; Heredia A; Domínguez E
    Plant Physiol; 2020 Aug; 183(4):1622-1637. PubMed ID: 32457092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembly of supramolecular lipid nanoparticles in the formation of plant biopolyester cutin.
    Domínguez E; Heredia-Guerrero JA; Benítez JJ; Heredia A
    Mol Biosyst; 2010 Jun; 6(6):948-50. PubMed ID: 20485739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cutin:cutin-acid endo-transacylase (CCT), a cuticle-remodelling enzyme activity in the plant epidermis.
    Xin A; Fei Y; Molnar A; Fry SC
    Biochem J; 2021 Feb; 478(4):777-798. PubMed ID: 33511979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Plant Polyester Cutin: Biosynthesis, Structure, and Biological Roles.
    Fich EA; Segerson NA; Rose JK
    Annu Rev Plant Biol; 2016 Apr; 67():207-33. PubMed ID: 26865339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pectin-lipid self-assembly: influence on the formation of polyhydroxy fatty acids nanoparticles.
    Guzman-Puyol S; Benítez JJ; Domínguez E; Bayer IS; Cingolani R; Athanassiou A; Heredia A; Heredia-Guerrero JA
    PLoS One; 2015; 10(4):e0124639. PubMed ID: 25915490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments.
    Meyer D; Pajonk S; Micali C; O'Connell R; Schulze-Lefert P
    Plant J; 2009 Mar; 57(6):986-99. PubMed ID: 19000165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apoplastic polyesters in Arabidopsis surface tissues--a typical suberin and a particular cutin.
    Franke R; Briesen I; Wojciechowski T; Faust A; Yephremov A; Nawrath C; Schreiber L
    Phytochemistry; 2005 Nov; 66(22):2643-58. PubMed ID: 16289150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biophysical and biochemical characteristics of cutin, a plant barrier biopolymer.
    Heredia A
    Biochim Biophys Acta; 2003 Mar; 1620(1-3):1-7. PubMed ID: 12595066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-State (13)C NMR Delineates the Architectural Design of Biopolymers in Native and Genetically Altered Tomato Fruit Cuticles.
    Chatterjee S; Matas AJ; Isaacson T; Kehlet C; Rose JK; Stark RE
    Biomacromolecules; 2016 Jan; 17(1):215-24. PubMed ID: 26652188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Salt-stress-induced association of phosphatidylinositol 4,5-bisphosphate with clathrin-coated vesicles in plants.
    König S; Ischebeck T; Lerche J; Stenzel I; Heilmann I
    Biochem J; 2008 Nov; 415(3):387-99. PubMed ID: 18721128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.