BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 1829347)

  • 1. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture.
    Belli WA; Marquis RE
    Appl Environ Microbiol; 1991 Apr; 57(4):1134-8. PubMed ID: 1829347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptation by Streptococcus mutans to acid tolerance.
    Hamilton IR; Buckley ND
    Oral Microbiol Immunol; 1991 Apr; 6(2):65-71. PubMed ID: 1658715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maintenance of proton motive force by Streptococcus mutans and Streptococcus sobrinus during growth in continuous culture.
    Hamilton IR
    Oral Microbiol Immunol; 1990 Oct; 5(5):280-7. PubMed ID: 2098703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid procedure for acid adaptation of oral lactic-acid bacteria and further characterization of the response.
    Ma Y; Curran TM; Marquis RE
    Can J Microbiol; 1997 Feb; 43(2):143-8. PubMed ID: 9090104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduction of acidurance of streptococcal growth and glycolysis by fluoride and gramicidin.
    Bender GR; Thibodeau EA; Marquis RE
    J Dent Res; 1985 Feb; 64(2):90-5. PubMed ID: 2579114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments.
    Fozo EM; Quivey RG
    Appl Environ Microbiol; 2004 Feb; 70(2):929-36. PubMed ID: 14766573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms.
    Li YH; Hanna MN; Svensäter G; Ellen RP; Cvitkovitch DG
    J Bacteriol; 2001 Dec; 183(23):6875-84. PubMed ID: 11698377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci.
    Bender GR; Sutton SV; Marquis RE
    Infect Immun; 1986 Aug; 53(2):331-8. PubMed ID: 3015800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermophysiology of Streptococcus mutans and related lactic-acid bacteria.
    Ma Y; Marquis RE
    Antonie Van Leeuwenhoek; 1997 Aug; 72(2):91-100. PubMed ID: 9298187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catabolite modification of acid tolerance of Streptococcus mutans GS-5.
    Belli WA; Marquis RE
    Oral Microbiol Immunol; 1994 Feb; 9(1):29-34. PubMed ID: 7478752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of freshly isolated strains of Streptococcus mutans and Streptococcus mitior to change in pH in the presence and absence of fluoride during growth in continuous culture.
    Hamilton IR; Bowden GH
    Infect Immun; 1982 Apr; 36(1):255-62. PubMed ID: 7076298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shifts in membrane fatty acid profiles associated with acid adaptation of Streptococcus mutans.
    Quivey RG; Faustoferri R; Monahan K; Marquis R
    FEMS Microbiol Lett; 2000 Aug; 189(1):89-92. PubMed ID: 10913871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental pH as a factor in the competition between strains of the oral streptococci Streptococcus mutans, S. sanguis, and "S. mitior" growing in continuous culture.
    Bowden GH; Hamilton IR
    Can J Microbiol; 1987 Sep; 33(9):824-7. PubMed ID: 3690424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of growth conditions on levels of components of the phosphoenolpyruvate:sugar phosphotransferase system in Streptococcus mutans and Streptococcus sobrinus grown in continuous culture.
    Vadeboncoeur C; Thibault L; Neron S; Halvorson H; Hamilton IR
    J Bacteriol; 1987 Dec; 169(12):5686-91. PubMed ID: 3680174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional profile of glucose-shocked and acid-adapted strains of Streptococcus mutans.
    Baker JL; Abranches J; Faustoferri RC; Hubbard CJ; Lemos JA; Courtney MA; Quivey R
    Mol Oral Microbiol; 2015 Dec; 30(6):496-517. PubMed ID: 26042838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro studies of growth and competition between S. salivarius TOVE-R and mutans streptococci.
    Kurasz AB; Tanzer JM; Bazer L; Savoldi E
    J Dent Res; 1986 Sep; 65(9):1149-53. PubMed ID: 3461031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton-pumping F-ATPase plays an important role in Streptococcus mutans under acidic conditions.
    Sekiya M; Izumisawa S; Iwamoto-Kihara A; Fan Y; Shimoyama Y; Sasaki M; Nakanishi-Matsui M
    Arch Biochem Biophys; 2019 May; 666():46-51. PubMed ID: 30930283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid-induced acid tolerance and acidogenicity of non-mutans streptococci.
    Takahashi N; Yamada T
    Oral Microbiol Immunol; 1999 Feb; 14(1):43-8. PubMed ID: 10204479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ATP-dependent P-(Ser)-HPr formation in Streptococcus mutans and Streptococcus salivarius.
    Thevenot T; Brochu D; Vadeboncoeur C; Hamilton IR
    J Bacteriol; 1995 May; 177(10):2751-9. PubMed ID: 7751285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acid-regulated proteins induced by Streptococcus mutans and other oral bacteria during acid shock.
    Hamilton IR; Svensäter G
    Oral Microbiol Immunol; 1998 Oct; 13(5):292-300. PubMed ID: 9807121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.