These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 18293575)

  • 1. A preliminary study on computerized lesion localization in MR mammography using 3D nMITR maps, multilayer cellular neural networks, and fuzzy c-partitioning.
    Ertas G; Gulcur HO; Tunaci M; Osman O; Ucan ON
    Med Phys; 2008 Jan; 35(1):195-205. PubMed ID: 18293575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching.
    Ertaş G; Gülçür HO; Osman O; Uçan ON; Tunaci M; Dursun M
    Comput Biol Med; 2008 Jan; 38(1):116-26. PubMed ID: 17854795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computerized detection of breast lesions in multi-centre and multi-instrument DCE-MR data using 3D principal component maps and template matching.
    Ertas G; Doran S; Leach MO
    Phys Med Biol; 2011 Dec; 56(24):7795-811. PubMed ID: 22107781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.
    Kooi T; van Ginneken B; Karssemeijer N; den Heeten A
    Med Phys; 2017 Mar; 44(3):1017-1027. PubMed ID: 28094850
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing breast lesion detection algorithms for digital breast tomosynthesis: Leveraging false positive findings.
    Hossain MB; Nishikawa RM; Lee J
    Med Phys; 2022 Dec; 49(12):7596-7608. PubMed ID: 35916103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative evaluation of free-form deformation registration for dynamic contrast-enhanced MR mammography.
    Tanner C; Schnabel JA; Hill DL; Hawkes DJ; Degenhard A; Leach MO; Hose DR; Hall-Craggs MA; Usiskin SI
    Med Phys; 2007 Apr; 34(4):1221-33. PubMed ID: 17500454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normalized maximum intensity time ratio maps and morphological descriptors for assessment of malignancy in MR mammography.
    Ertas G; Gulcur HO; Tunaci M
    Med Phys; 2008 May; 35(5):1893-900. PubMed ID: 18561664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical theory of shape and neuro-fuzzy methodology-based diagnostic analysis: a comparative study on early detection and treatment planning of brain cancer.
    Kar S; Majumder DD
    Int J Clin Oncol; 2017 Aug; 22(4):667-681. PubMed ID: 28321787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images.
    Chen W; Giger ML; Bick U
    Acad Radiol; 2006 Jan; 13(1):63-72. PubMed ID: 16399033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-aided detection of mammographic microcalcifications: pattern recognition with an artificial neural network.
    Chan HP; Lo SC; Sahiner B; Lam KL; Helvie MA
    Med Phys; 1995 Oct; 22(10):1555-67. PubMed ID: 8551980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic Detection and Segmentation of Breast Cancer on MRI Using Mask R-CNN Trained on Non-Fat-Sat Images and Tested on Fat-Sat Images.
    Zhang Y; Chan S; Park VY; Chang KT; Mehta S; Kim MJ; Combs FJ; Chang P; Chow D; Parajuli R; Mehta RS; Lin CY; Chien SH; Chen JH; Su MY
    Acad Radiol; 2022 Jan; 29 Suppl 1(Suppl 1):S135-S144. PubMed ID: 33317911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Self-organizing neural networks for automatic detection and classification of contrast (media) enhancement of lesions in dynamic MR-mammography].
    Vomweg TW; Teifke A; Kauczor HU; Achenbach T; Rieker O; Schreiber WG; Heitmann KR; Beier T; Thelen M
    Rofo; 2005 May; 177(5):703-13. PubMed ID: 15871086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved lesion detection in MR mammography: three-dimensional segmentation, moving voxel sampling, and normalized maximum intensity-time ratio entropy.
    Ertaş G; Gülçür HO; Tunaci M
    Acad Radiol; 2007 Feb; 14(2):151-61. PubMed ID: 17236988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.
    Yang X; Liu C; Wang Z; Yang J; Min HL; Wang L; Cheng KT
    Med Image Anal; 2017 Dec; 42():212-227. PubMed ID: 28850876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance and reproducibility of a computerized mass detection scheme for digitized mammography using rotated and resampled images: an assessment.
    Zheng B; Maitz GS; Ganott MA; Abrams G; Leader JK; Gur D
    AJR Am J Roentgenol; 2005 Jul; 185(1):194-8. PubMed ID: 15972422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images.
    Weon C; Hyun Nam W; Lee D; Lee JY; Ra JB
    Med Phys; 2015 Jan; 42(1):335-47. PubMed ID: 25563273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic identification and classification of characteristic kinetic curves of breast lesions on DCE-MRI.
    Chen W; Giger ML; Bick U; Newstead GM
    Med Phys; 2006 Aug; 33(8):2878-87. PubMed ID: 16964864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method to test the reproducibility and to improve performance of computer-aided detection schemes for digitized mammograms.
    Zheng B; Gur D; Good WF; Hardesty LA
    Med Phys; 2004 Nov; 31(11):2964-72. PubMed ID: 15587648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment response assessment of breast masses on dynamic contrast-enhanced magnetic resonance scans using fuzzy c-means clustering and level set segmentation.
    Shi J; Sahiner B; Chan HP; Paramagul C; Hadjiiski LM; Helvie M; Chenevert T
    Med Phys; 2009 Nov; 36(11):5052-63. PubMed ID: 19994516
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of mass regions in mammograms by bilateral analysis adapted to breast density using similarity indexes and convolutional neural networks.
    Bandeira Diniz JO; Bandeira Diniz PH; Azevedo Valente TL; Corrêa Silva A; de Paiva AC; Gattass M
    Comput Methods Programs Biomed; 2018 Mar; 156():191-207. PubMed ID: 29428071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.