BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 18293961)

  • 1. Hydration-dependent protein dynamics revealed by molecular dynamics simulation of crystalline staphylococcal nuclease.
    Joti Y; Nakagawa H; Kataoka M; Kitao A
    J Phys Chem B; 2008 Mar; 112(11):3522-8. PubMed ID: 18293961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics study of water penetration in staphylococcal nuclease.
    Damjanović A; García-Moreno B; Lattman EE; García AE
    Proteins; 2005 Aug; 60(3):433-49. PubMed ID: 15971206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: a molecular dynamics computer simulation study.
    Smolin N; Winter R
    J Phys Chem B; 2008 Jan; 112(3):997-1006. PubMed ID: 18171045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of the dynamic transition upon pressurization of crystalline proteins.
    Oleinikova A; Smolin N; Brovchenko I
    J Phys Chem B; 2006 Oct; 110(39):19619-24. PubMed ID: 17004829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal breaking of spanning water networks in the hydration shell of proteins.
    Brovchenko I; Krukau A; Smolin N; Oleinikova A; Geiger A; Winter R
    J Chem Phys; 2005 Dec; 123(22):224905. PubMed ID: 16375508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics, hydration, and motional averaging of a loop-gated artificial protein cavity: the W191G mutant of cytochrome c peroxidase in water as revealed by molecular dynamics simulations.
    Baron R; McCammon JA
    Biochemistry; 2007 Sep; 46(37):10629-42. PubMed ID: 17718514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of protein-hydration hydrodynamics by molecular dynamics simulations.
    Lau EY; Krishnan VV
    Biophys Chem; 2007 Oct; 130(1-2):55-64. PubMed ID: 17720293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent mobility and the protein 'glass' transition.
    Vitkup D; Ringe D; Petsko GA; Karplus M
    Nat Struct Biol; 2000 Jan; 7(1):34-8. PubMed ID: 10625424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-dependent mechanisms for the dynamics of protein-hydration waters: a molecular dynamics simulation study.
    Vogel M
    J Phys Chem B; 2009 Jul; 113(28):9386-92. PubMed ID: 19548661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A connected-cluster of hydration around myoglobin: correlation between molecular dynamics simulations and experiment.
    Lounnas V; Pettitt BM
    Proteins; 1994 Feb; 18(2):133-47. PubMed ID: 8159663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depth dependent dynamics in the hydration shell of a protein.
    Servantie J; Atilgan C; Atilgan AR
    J Chem Phys; 2010 Aug; 133(8):085101. PubMed ID: 20815594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations of trehalose as a 'dynamic reducer' for solvent water molecules in the hydration shell.
    Choi Y; Cho KW; Jeong K; Jung S
    Carbohydr Res; 2006 Jun; 341(8):1020-8. PubMed ID: 16546147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a quantitative understanding of protein hydration and volumetric properties.
    Mitra L; Rouget JB; Garcia-Moreno B; Royer CA; Winter R
    Chemphyschem; 2008 Dec; 9(18):2715-21. PubMed ID: 18814170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of the solvent in the dynamical transitions of proteins: the case of the lysozyme-water system.
    Mallamace F; Chen SH; Broccio M; Corsaro C; Crupi V; Majolino D; Venuti V; Baglioni P; Fratini E; Vannucci C; Stanley HE
    J Chem Phys; 2007 Jul; 127(4):045104. PubMed ID: 17672727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial hydration maps and dynamics of naphthalene in ambient and supercritical water.
    Svishchev IM; Plugatyr A; Nahtigal IG
    J Chem Phys; 2008 Mar; 128(12):124514. PubMed ID: 18376950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale networks of hydration water molecules around bovine beta-trypsin revealed by cryogenic X-ray crystal structure analysis.
    Nakasako M
    J Mol Biol; 1999 Jun; 289(3):547-64. PubMed ID: 10356328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation reveals a surface salt bridge forming a kinetic trap in unfolding of truncated Staphylococcal nuclease.
    Gruia AD; Fischer S; Smith JC
    Proteins; 2003 Feb; 50(3):507-15. PubMed ID: 12557192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.
    Shao Q; Huang L; Zhou J; Lu L; Zhang L; Lu X; Jiang S; Gubbins KE; Shen W
    Phys Chem Chem Phys; 2008 Apr; 10(14):1896-906. PubMed ID: 18368182
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics calculations on amylose fragments. I. Glass transition temperatures of maltodecaose at 1, 5, 10, and 15.8% hydration.
    Momany FA; Willett JL
    Biopolymers; 2002 Feb; 63(2):99-110. PubMed ID: 11786998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.