These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 18294020)

  • 1. Fluidic assembly and packing of microspheres in confined channels.
    Vanapalli SA; Iacovella CR; Sung KE; Mukhija D; Millunchick JM; Burns MA; Glotzer SC; Solomon MJ
    Langmuir; 2008 Apr; 24(7):3661-70. PubMed ID: 18294020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable fluidic production of microparticles with configurable anisotropy.
    Sung KE; Vanapalli SA; Mukhija D; McKay HA; Millunchick JM; Burns MA; Solomon MJ
    J Am Chem Soc; 2008 Jan; 130(4):1335-40. PubMed ID: 18166053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Centrifugal sedimentation for selectively packing channels with silica microbeads in three-dimensional micro/nanofluidic devices.
    Gong M; Bohn PW; Sweedler JV
    Anal Chem; 2009 Mar; 81(5):2022-6. PubMed ID: 19182940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels.
    Park JS; Jung HI
    Anal Chem; 2009 Oct; 81(20):8280-8. PubMed ID: 19775116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast self-assembly of microscale particles by open-channel flow.
    Choi S; Park I; Hao Z; Holman HY; Pisano AP; Zohdi TI
    Langmuir; 2010 Apr; 26(7):4661-7. PubMed ID: 19921822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of electrokinetic transport of a spherical particle in a microchannel.
    Unni HN; Keh HJ; Yang C
    Electrophoresis; 2007 Feb; 28(4):658-64. PubMed ID: 17304499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic diffusion of spherical particles in closely confining microchannels.
    Dettmer SL; Pagliara S; Misiunas K; Keyser UF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062305. PubMed ID: 25019774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Focused electrophoretic motion and selected electrokinetic dispensing of particles and cells in cross-microchannels.
    Xuan X; Li D
    Electrophoresis; 2005 Sep; 26(18):3552-60. PubMed ID: 16110466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-transport analysis for particulate packings in trapezoidal microchip separation channels.
    Khirevich S; Höltzel A; Hlushkou D; Seidel-Morgenstern A; Tallarek U
    Lab Chip; 2008 Nov; 8(11):1801-8. PubMed ID: 18941678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of engineering design on heterogeneous biocatalysis in microchannels.
    Jones F; Bailey R; Wilson S; Hiestand J
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):859-73. PubMed ID: 18478440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of supramolecular hydrogel microspheres via microfluidics.
    Chen W; Yang Y; Rinadi C; Zhou D; Shen AQ
    Lab Chip; 2009 Oct; 9(20):2947-51. PubMed ID: 19789748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The deformation of flexible PDMS microchannels under a pressure driven flow.
    Hardy BS; Uechi K; Zhen J; Pirouz Kavehpour H
    Lab Chip; 2009 Apr; 9(7):935-8. PubMed ID: 19294304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA molecule dynamics in converging-diverging microchannels.
    Hsieh SS; Liou JH
    Biotechnol Appl Biochem; 2009 Jan; 52(Pt 1):29-40. PubMed ID: 18251714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrokinetic fluid control in two-dimensional planar microfluidic devices.
    Lerch MA; Jacobson SC
    Anal Chem; 2007 Oct; 79(19):7485-91. PubMed ID: 17718538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics with on-line dynamic light scattering for size measurements.
    Destremaut F; Salmon JB; Qi L; Chapel JP
    Lab Chip; 2009 Nov; 9(22):3289-96. PubMed ID: 19865738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sample concentration and impedance detection on a microfluidic polymer chip.
    Sabounchi P; Morales AM; Ponce P; Lee LP; Simmons BA; Davalos RV
    Biomed Microdevices; 2008 Oct; 10(5):661-70. PubMed ID: 18484178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guided and fluidic self-assembly of microstructures using railed microfluidic channels.
    Chung SE; Park W; Shin S; Lee SA; Kwon S
    Nat Mater; 2008 Jul; 7(7):581-7. PubMed ID: 18552850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.