BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 18294712)

  • 1. Biological ferrous sulfate oxidation by A. ferrooxidans immobilized on chitosan beads.
    Giaveno A; Lavalle L; Guibal E; Donati E
    J Microbiol Methods; 2008 Mar; 72(3):227-34. PubMed ID: 18294712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors.
    Rowe OF; Johnson DB
    Syst Appl Microbiol; 2008 Mar; 31(1):68-77. PubMed ID: 17983721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material.
    Ebrahimi S; Fernández Morales FJ; Kleerebezem R; Heijnen JJ; van Loosdrecht MC
    Biotechnol Bioeng; 2005 May; 90(4):462-72. PubMed ID: 15772947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-rate ferrous iron oxidation by immobilized Acidithiobacillus ferrooxidans with complex of PVA and sodium alginate.
    Yujian W; Xiaojuan Y; Wei T; Hongyu L
    J Microbiol Methods; 2007 Feb; 68(2):212-7. PubMed ID: 16979768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferrous iron oxidation by foam immobilized Acidithiobacillus ferrooxidans: Experiments and modeling.
    Jaisankar S; Modak JM
    Biotechnol Prog; 2009; 25(5):1328-42. PubMed ID: 19610075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of Acidithiobacillus ferrooxidans on cotton gauze for biological oxidation of ferrous ions in a batch bioreactor.
    Zhu N; Shi C; Shang R; Yang C; Xu Z; Wu P
    Biotechnol Appl Biochem; 2017 Sep; 64(5):727-734. PubMed ID: 26621070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of Leptospirillum ferrooxidans SRPCBL and development for enhanced ferric regeneration in stirred tank and airlift column reactor.
    Dave SR
    Bioresour Technol; 2008 Nov; 99(16):7803-6. PubMed ID: 18325759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an optimal medium for continuous ferrous iron oxidation by immobilized Acidothiobacillus ferrooxidans cells.
    Kim TW; Kim CJ; Chang YK; Ryu HW; Cho KS
    Biotechnol Prog; 2002; 18(4):752-9. PubMed ID: 12153309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Characterization and heavy metal adsorption properties of schwertmannite synthesized by bacterial oxidation of ferrous sulfate solutions].
    Zhou SG; Zhou LX; Chen FX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Feb; 27(2):367-70. PubMed ID: 17514978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological oxidation of metallic copper by Acidithiobacillus ferrooxidans.
    Lilova K; Karamanev D; Flemming RL; Karamaneva T
    Biotechnol Bioeng; 2007 Jun; 97(2):308-16. PubMed ID: 16937398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Study on the rejuvenating by isolation and the immobilization of Thiobacillus ferrooxidans].
    Di J; Zhao X; Geng B
    Wei Sheng Wu Xue Bao; 2003 Aug; 43(4):487-91. PubMed ID: 16276924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model of the oxidation of ferrous iron by a biofilm of Thiobacillus ferrooxidans.
    Mesa MM; Macías M; Cantero D
    Biotechnol Prog; 2002; 18(4):679-85. PubMed ID: 12153298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans.
    Chen Y; Suzuki I
    Can J Microbiol; 2005 Aug; 51(8):695-703. PubMed ID: 16234867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retention in a fluidized-bed reactor.
    Kinnunen PH; Puhakka JA
    Biotechnol Bioeng; 2004 Mar; 85(7):697-705. PubMed ID: 14991647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous biological ferrous iron oxidation in a submerged membrane bioreactor.
    Park D; Lee DS; Park JM
    Water Sci Technol; 2005; 51(6-7):59-68. PubMed ID: 16003962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of chloride and sulfate on formation of akaganéite and schwertmannite through ferrous biooxidation by Acidithiobacillus ferrooxidans cells.
    Xiong H; Liao Y; Zhou L
    Environ Sci Technol; 2008 Dec; 42(23):8681-6. PubMed ID: 19192781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biotic factor does not limit operational pH in packed-bed bioreactor for ferrous iron biooxidation.
    Mazuelos A; Moreno JM; Carranza F; Palomino C; Torres A; Villalobo E
    J Ind Microbiol Biotechnol; 2012 Dec; 39(12):1851-8. PubMed ID: 22911238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of anaerobic elemental sulfur oxidation by ferric iron in Acidithiobacillus ferrooxidans and protein identification by comparative 2-DE-MS/MS.
    Kucera J; Bouchal P; Cerna H; Potesil D; Janiczek O; Zdrahal Z; Mandl M
    Antonie Van Leeuwenhoek; 2012 Mar; 101(3):561-73. PubMed ID: 22057833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Model-based evaluation of ferrous iron oxidation by acidophilic bacteria in chemostat and biofilm airlift reactors.
    Ebrahimi S; Faraghi N; Hosseini M
    J Ind Microbiol Biotechnol; 2015 Oct; 42(10):1363-8. PubMed ID: 26264929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biooxidation of ferrous iron by immobilized Acidithiobacillus ferrooxidans in poly(vinyl alcohol) cryogel carriers.
    Long ZE; Huang Y; Cai Z; Cong W; Ouyang F
    Biotechnol Lett; 2003 Feb; 25(3):245-9. PubMed ID: 12882579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.