These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1136 related articles for article (PubMed ID: 18295191)
21. Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats. Russell VA; Wiggins TM Metab Brain Dis; 2000 Dec; 15(4):297-304. PubMed ID: 11383554 [TBL] [Abstract][Full Text] [Related]
22. Dorsal hippocampus and classical fear conditioning to tone and context in rats: effects of local NMDA-receptor blockade and stimulation. Bast T; Zhang WN; Feldon J Hippocampus; 2003; 13(6):657-75. PubMed ID: 12962312 [TBL] [Abstract][Full Text] [Related]
23. Rapid cortico-limbic alterations in AMPA receptor densities after administration of PCP: implications for schizophrenia. Zavitsanou K; Nguyen V; Newell K; Ballantyne P; Huang XF J Chem Neuroanat; 2008 Oct; 36(2):71-6. PubMed ID: 18640263 [TBL] [Abstract][Full Text] [Related]
24. Chronic administration of olmesartan attenuates the exaggerated pressor response to glutamate in the rostral ventrolateral medulla of SHR. Lin Y; Matsumura K; Kagiyama S; Fukuhara M; Fujii K; Iida M Brain Res; 2005 Oct; 1058(1-2):161-6. PubMed ID: 16143317 [TBL] [Abstract][Full Text] [Related]
25. Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-D-aspartate receptor stimulation. Quarta D; Borycz J; Solinas M; Patkar K; Hockemeyer J; Ciruela F; Lluis C; Franco R; Woods AS; Goldberg SR; Ferré S J Neurochem; 2004 Nov; 91(4):873-80. PubMed ID: 15525341 [TBL] [Abstract][Full Text] [Related]
26. Glutamatergic regulation of [3H]-noradrenaline release in the medulla oblongata of normotensive and spontaneously hypertensive rats. Tsuda K; Tsuda S; Nishio I; Masuyama Y; Goldstein M J Hypertens; 1994 May; 12(5):517-22. PubMed ID: 7930551 [TBL] [Abstract][Full Text] [Related]
28. Effects of monomethylarsonic and monomethylarsonous acid on evoked synaptic potentials in hippocampal slices of adult and young rats. Krüger K; Straub H; Hirner AV; Hippler J; Binding N; Musshoff U Toxicol Appl Pharmacol; 2009 Apr; 236(1):115-23. PubMed ID: 19371632 [TBL] [Abstract][Full Text] [Related]
29. Methylphenidate normalizes elevated dopamine transporter densities in an animal model of the attention-deficit/hyperactivity disorder combined type, but not to the same extent in one of the attention-deficit/hyperactivity disorder inattentive type. Roessner V; Sagvolden T; Dasbanerjee T; Middleton FA; Faraone SV; Walaas SI; Becker A; Rothenberger A; Bock N Neuroscience; 2010 Jun; 167(4):1183-91. PubMed ID: 20211696 [TBL] [Abstract][Full Text] [Related]
30. Characterization of nitric oxide generator-induced hippocampal [3H]norepinephrine release. I. The role of glutamate. Lonart G; Johnson KM J Pharmacol Exp Ther; 1995 Oct; 275(1):7-13. PubMed ID: 7562597 [TBL] [Abstract][Full Text] [Related]
31. Nitric oxide-evoked glutamate release and cGMP production in cerebellar slices: control by presynaptic 5-HT1D receptors. Marcoli M; Cervetto C; Paluzzi P; Guarnieri S; Raiteri M; Maura G Neurochem Int; 2006 Jul; 49(1):12-9. PubMed ID: 16469416 [TBL] [Abstract][Full Text] [Related]
32. Neurokinin release in the rat nucleus of the solitary tract via NMDA and AMPA receptors. Colin I; Blondeau C; Baude A Neuroscience; 2002; 115(4):1023-33. PubMed ID: 12453476 [TBL] [Abstract][Full Text] [Related]
33. Increased glutamate-stimulated release of dopamine in substantia nigra of a rat model for attention-deficit/hyperactivity disorder--lack of effect of methylphenidate. Warton FL; Howells FM; Russell VA Metab Brain Dis; 2009 Dec; 24(4):599-613. PubMed ID: 19821016 [TBL] [Abstract][Full Text] [Related]
34. AMPA and NMDA receptor-mediated currents in developing dentate gyrus granule cells. Ye GL; Yi S; Gamkrelidze G; Pasternak JF; Trommer BL Brain Res Dev Brain Res; 2005 Mar; 155(1):26-32. PubMed ID: 15763272 [TBL] [Abstract][Full Text] [Related]
36. Creation of AMPA-silent synapses in the neonatal hippocampus. Xiao MY; Wasling P; Hanse E; Gustafsson B Nat Neurosci; 2004 Mar; 7(3):236-43. PubMed ID: 14966524 [TBL] [Abstract][Full Text] [Related]
37. Presynaptic and postsynaptic actions of halothane at glutamatergic synapses in the mouse hippocampus. Kirson ED; Yaari Y; Perouansky M Br J Pharmacol; 1998 Aug; 124(8):1607-14. PubMed ID: 9756375 [TBL] [Abstract][Full Text] [Related]
38. 3-Nitropropionic acid toxicity in hippocampus: protection through N-methyl-D-aspartate receptor antagonism. Karanian DA; Baude AS; Brown QB; Parsons CG; Bahr BA Hippocampus; 2006; 16(10):834-42. PubMed ID: 16897723 [TBL] [Abstract][Full Text] [Related]
39. Developmental lead (Pb) exposure reduces the ability of the NMDA antagonist MK-801 to suppress long-term potentiation (LTP) in the rat dentate gyrus, in vivo. Gilbert ME; Lasley SM Neurotoxicol Teratol; 2007; 29(3):385-93. PubMed ID: 17350801 [TBL] [Abstract][Full Text] [Related]
40. Facilitation of zinc influx via AMPA/kainate receptor activation in the hippocampus. Takeda A; Sakurada N; Ando M; Kanno S; Oku N Neurochem Int; 2009 Nov; 55(6):376-82. PubMed ID: 19393273 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]