These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 18295341)

  • 21. Characterization and interpretation of electrical signals from random networks of cultured neurons.
    Bove M; Genta G; Verreschi G; Grattarola M
    Technol Health Care; 1996 Apr; 4(1):77-86. PubMed ID: 8773310
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The emergence and properties of mutual synchronization in in vitro coupled cortical networks.
    Baruchi I; Volman V; Raichman N; Shein M; Ben-Jacob E
    Eur J Neurosci; 2008 Nov; 28(9):1825-35. PubMed ID: 18973597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An automated microdrop delivery system for neuronal network patterning on microelectrode arrays.
    Macis E; Tedesco M; Massobrio P; Raiteri R; Martinoia S
    J Neurosci Methods; 2007 Mar; 161(1):88-95. PubMed ID: 17141327
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Passaged neural stem cell-derived neuronal networks for a portable biosensor.
    O'Shaughnessy TJ; Liu JL; Ma W
    Biosens Bioelectron; 2009 Apr; 24(8):2365-70. PubMed ID: 19162463
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Agarose microwell based neuronal micro-circuit arrays on microelectrode arrays for high throughput drug testing.
    Kang G; Lee JH; Lee CS; Nam Y
    Lab Chip; 2009 Nov; 9(22):3236-42. PubMed ID: 19865730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MEA-based recording of neuronal activity in vitro.
    Jimbo Y
    Arch Ital Biol; 2007 Nov; 145(3-4):289-97. PubMed ID: 18075122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuronal network morphology and electrophysiologyof hippocampal neurons cultured on surface-treated multielectrode arrays.
    Soussou WV; Yoon GJ; Brinton RD; Berger TW
    IEEE Trans Biomed Eng; 2007 Jul; 54(7):1309-20. PubMed ID: 17605362
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.
    Heikkilä TJ; Ylä-Outinen L; Tanskanen JM; Lappalainen RS; Skottman H; Suuronen R; Mikkonen JE; Hyttinen JA; Narkilahti S
    Exp Neurol; 2009 Jul; 218(1):109-16. PubMed ID: 19393237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dielectrophoretic trapping of dissociated fetal cortical rat neurons.
    Heida T; Rutten WL; Marani E
    IEEE Trans Biomed Eng; 2001 Aug; 48(8):921-30. PubMed ID: 11499529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional connectivity and dynamics of cortical-thalamic networks co-cultured in a dual compartment device.
    Kanagasabapathi TT; Massobrio P; Barone RA; Tedesco M; Martinoia S; Wadman WJ; Decré MM
    J Neural Eng; 2012 Jun; 9(3):036010. PubMed ID: 22614532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell positioning bioelectronic chips.
    Yu Z; Xiang G; Pan L; Huang L; Yu Z; Xing W; Cheng J
    Biomed Microdevices; 2004 Dec; 6(4):311-24. PubMed ID: 15548878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Measurement of neuronal activity of individual neurons after stroke in the rat using a microwire electrode array.
    Zhang X; Zhang RL; Zhang ZG; Chopp M
    J Neurosci Methods; 2007 May; 162(1-2):91-100. PubMed ID: 17287025
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Separation of individual neurons using dielectrophoretic alternative current fields.
    Prasad S; Zhang X; Yang M; Ni Y; Parpura V; Ozkan CS; Ozkan M
    J Neurosci Methods; 2004 May; 135(1-2):79-88. PubMed ID: 15020092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multielectrode arrays with elastomeric microstructured overlays for extracellular recordings from patterned neurons.
    Claverol-Tinturé E; Ghirardi M; Fiumara F; Rosell X; Cabestany J
    J Neural Eng; 2005 Jun; 2(2):L1-7. PubMed ID: 15928406
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-density electrode array for imaging in vitro electrophysiological activity.
    Berdondini L; van der Wal PD; Guenat O; de Rooij NF; Koudelka-Hep M; Seitz P; Kaufmann R; Metzler P; Blanc N; Rohr S
    Biosens Bioelectron; 2005 Jul; 21(1):167-74. PubMed ID: 15967365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of tetanus-induced effects in linearly lined-up micropatterned neuronal networks: application of a multi-electrode array chip combined with agarose microstructures.
    Suzuki I; Yasuda K
    Biochem Biophys Res Commun; 2007 May; 356(2):470-5. PubMed ID: 17362877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays.
    Shein M; Greenbaum A; Gabay T; Sorkin R; David-Pur M; Ben-Jacob E; Hanein Y
    Biomed Microdevices; 2009 Apr; 11(2):495-501. PubMed ID: 19067173
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A micro-optrode for simultaneous extracellular electrical and intracellular optical recording from neurons in an intact oscillatory neuronal network.
    Bradley PM; Murphy D; Kasparov S; Croker J; Paton JF
    J Neurosci Methods; 2008 Mar; 168(2):383-95. PubMed ID: 18155773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A diamond-based biosensor for the recording of neuronal activity.
    Ariano P; Lo Giudice A; Marcantoni A; Vittone E; Carbone E; Lovisolo D
    Biosens Bioelectron; 2009 Mar; 24(7):2046-50. PubMed ID: 19062266
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigating neuronal activity by SPYCODE multi-channel data analyzer.
    Bologna LL; Pasquale V; Garofalo M; Gandolfo M; Baljon PL; Maccione A; Martinoia S; Chiappalone M
    Neural Netw; 2010 Aug; 23(6):685-97. PubMed ID: 20554151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.