These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 18295886)
1. Pro-nociceptive action of cholecystokinin in the periaqueductal grey: a role in neuropathic and anxiety-induced hyperalgesic states. Lovick TA Neurosci Biobehav Rev; 2008; 32(4):852-62. PubMed ID: 18295886 [TBL] [Abstract][Full Text] [Related]
2. Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat. Kovelowski CJ; Ossipov MH; Sun H; Lai J; Malan TP; Porreca F Pain; 2000 Sep; 87(3):265-273. PubMed ID: 10963906 [TBL] [Abstract][Full Text] [Related]
5. Chronic spinal nerve ligation induces changes in response characteristics of nociceptive spinal dorsal horn neurons and in their descending regulation originating in the periaqueductal gray in the rat. Pertovaara A; Kontinen VK; Kalso EA Exp Neurol; 1997 Oct; 147(2):428-36. PubMed ID: 9344567 [TBL] [Abstract][Full Text] [Related]
6. Neuronal hyperactivity at the spinal cord and periaqueductal grey during painful diabetic neuropathy: effects of gabapentin. Morgado C; Terra PP; Tavares I Eur J Pain; 2010 Aug; 14(7):693-9. PubMed ID: 20056558 [TBL] [Abstract][Full Text] [Related]
7. Genotype-dependent responsivity to inflammatory pain: A role for TRPV1 in the periaqueductal grey. Madasu MK; Okine BN; Olango WM; Rea K; Lenihan R; Roche M; Finn DP Pharmacol Res; 2016 Nov; 113(Pt A):44-54. PubMed ID: 27520401 [TBL] [Abstract][Full Text] [Related]
8. Roles of the periaqueductal gray in descending facilitatory and inhibitory controls of intramuscular hypertonic saline induced muscle nociception. Lei J; Sun T; Lumb BM; You HJ Exp Neurol; 2014 Jul; 257():88-94. PubMed ID: 24792920 [TBL] [Abstract][Full Text] [Related]
9. GPR30 receptor promotes preoperative anxiety-induced postoperative hyperalgesia by up-regulating GABA Jiang M; Sun Y; Lei Y; Hu F; Xia Z; Liu Y; Ma Z; Gu X BMC Anesthesiol; 2020 Apr; 20(1):93. PubMed ID: 32321426 [TBL] [Abstract][Full Text] [Related]
10. Effect of periaqueductal gray melanocortin 4 receptor in pain facilitation and glial activation in rat model of chronic constriction injury. Chu H; Sun J; Xu H; Niu Z; Xu M Neurol Res; 2012 Nov; 34(9):871-88. PubMed ID: 22889616 [TBL] [Abstract][Full Text] [Related]
11. Postnatal maturation of endogenous opioid systems within the periaqueductal grey and spinal dorsal horn of the rat. Kwok CHT; Devonshire IM; Bennett AJ; Hathway GJ Pain; 2014 Jan; 155(1):168-178. PubMed ID: 24076162 [TBL] [Abstract][Full Text] [Related]
12. Characterisation of peroxisome proliferator-activated receptor signalling in the midbrain periaqueductal grey of rats genetically prone to heightened stress, negative affect and hyperalgesia. Okine BN; Gaspar JC; Madasu MK; Olango WM; Harhen B; Roche M; Finn DP Brain Res; 2017 Feb; 1657():185-192. PubMed ID: 27916440 [TBL] [Abstract][Full Text] [Related]
13. Involvement of cholecystokinin in the opioid tolerance induced by dipyrone (metamizol) microinjections into the periaqueductal gray matter of rats. Tortorici V; Nogueira L; Aponte Y; Vanegas H Pain; 2004 Nov; 112(1-2):113-20. PubMed ID: 15494191 [TBL] [Abstract][Full Text] [Related]
14. Tibetan medicine Ru-yi-Zhen-bao Pills exhibits anti-migraine effect through mediating PAG anti-nociceptive channel. Luo YM; Ren XQ; Yang XQ; Song HR; Li R; Gao MH; Li YR; Zhou RR; Ma L; Zhang SJ; Dong RJ; Ge DY; Wang CG; Ren QJ; Tao XH J Ethnopharmacol; 2020 Mar; 249():112437. PubMed ID: 31794788 [TBL] [Abstract][Full Text] [Related]
15. Involvement of local cholecystokinin in the tolerance induced by morphine microinjections into the periaqueductal gray of rats. Tortorici V; Nogueira L; Salas R; Vanegas H Pain; 2003 Mar; 102(1-2):9-16. PubMed ID: 12620592 [TBL] [Abstract][Full Text] [Related]
16. Differential effects of cholecystokinin (CCK-8) microinjection into the ventrolateral and dorsolateral periaqueductal gray on anxiety models in Wistar rats. Vázquez-León P; Campos-Rodríguez C; Gonzalez-Pliego C; Miranda-Páez A Horm Behav; 2018 Nov; 106():105-111. PubMed ID: 30342011 [TBL] [Abstract][Full Text] [Related]
17. Cholecystokinin exerts an effect via the endocannabinoid system to inhibit GABAergic transmission in midbrain periaqueductal gray. Mitchell VA; Jeong HJ; Drew GM; Vaughan CW Neuropsychopharmacology; 2011 Aug; 36(9):1801-10. PubMed ID: 21525858 [TBL] [Abstract][Full Text] [Related]
18. Region-specific deletions of the glutamate transporter GLT1 differentially affect nerve injury-induced neuropathic pain in mice. Zhao Z; Hiraoka Y; Ogawa H; Tanaka K Glia; 2018 Sep; 66(9):1988-1998. PubMed ID: 29722912 [TBL] [Abstract][Full Text] [Related]
19. Evidence that increased cholecystokinin (CCK) in the periaqueductal gray (PAG) facilitates changes in Resident-Intruder social interactions triggered by peripheral nerve injury. Keay KA; Argueta MA; Zafir DN; Wyllie PM; Michael GJ; Boorman DC J Neurochem; 2021 Sep; 158(5):1151-1171. PubMed ID: 34287873 [TBL] [Abstract][Full Text] [Related]
20. Activation of descending pain-facilitatory pathways from the rostral ventromedial medulla by cholecystokinin elicits release of prostaglandin-E₂ in the spinal cord. Marshall TM; Herman DS; Largent-Milnes TM; Badghisi H; Zuber K; Holt SC; Lai J; Porreca F; Vanderah TW Pain; 2012 Jan; 153(1):86-94. PubMed ID: 22030324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]