These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 18296131)

  • 1. Moulding technique demonstrates the contribution of surface geometry to the super-hydrophobic properties of the surface of a water strider.
    Goodwyn PP; De Souza E; Fujisaki K; Gorb S
    Acta Biomater; 2008 May; 4(3):766-70. PubMed ID: 18296131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hydrodynamics of water strider locomotion.
    Hu DL; Chan B; Bush JW
    Nature; 2003 Aug; 424(6949):663-6. PubMed ID: 12904790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nature's design of hierarchical superhydrophobic surfaces of a water strider for low adhesion and low-energy dissipation.
    Su Y; Ji B; Huang Y; Hwang KC
    Langmuir; 2010 Dec; 26(24):18926-37. PubMed ID: 21086997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of surfactants on wetting of super-hydrophobic surfaces.
    Mohammadi R; Wassink J; Amirfazli A
    Langmuir; 2004 Oct; 20(22):9657-62. PubMed ID: 15491199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials.
    Park CI; Jeong HE; Lee SH; Cho HS; Suh KY
    J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skating and diving: Changes in functional morphology of the setal and microtrichial cover during ontogenesis in Aquarius paludum fabricius (Heteroptera, Gerridae).
    Goodwyn PJ; Voigt D; Fujisaki K
    J Morphol; 2008 Jun; 269(6):734-44. PubMed ID: 18302188
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Super Water- and Oil-Repellent Surfaces Resulting from Fractal Structure.
    Shibuichi S; Yamamoto T; Onda T; Tsujii K
    J Colloid Interface Sci; 1998 Dec; 208(1):287-294. PubMed ID: 9820776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifying the anti-wetting property of butterfly wings and water strider legs by atomic layer deposition coating: surface materials versus geometry.
    Ding Y; Xu S; Zhang Y; Wang AC; Wang MH; Xiu Y; Wong CP; Wang ZL
    Nanotechnology; 2008 Sep; 19(35):355708. PubMed ID: 21828862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysics: water-repellent legs of water striders.
    Gao X; Jiang L
    Nature; 2004 Nov; 432(7013):36. PubMed ID: 15525973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterisation of super-hydrophobic surfaces.
    Crick CR; Parkin IP
    Chemistry; 2010 Mar; 16(12):3568-88. PubMed ID: 20209527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of plasma processed surfaces with tuned wettability.
    Ruiz A; Valsesia A; Ceccone G; Gilliland D; Colpo P; Rossi F
    Langmuir; 2007 Dec; 23(26):12984-9. PubMed ID: 18020471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable biomimetic super-hydrophobic engineering materials.
    Guo Z; Zhou F; Hao J; Liu W
    J Am Chem Soc; 2005 Nov; 127(45):15670-1. PubMed ID: 16277486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-hydrophobicity fundamentals: implications to biofouling prevention.
    Marmur A
    Biofouling; 2006; 22(1-2):107-15. PubMed ID: 16581675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces.
    Tsougeni K; Vourdas N; Tserepi A; Gogolides E; Cardinaud C
    Langmuir; 2009 Oct; 25(19):11748-59. PubMed ID: 19788226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology and neurophysiology of tarsal vibration receptors in the water strider Aquarius paludum (Heteroptera: Gerridae).
    Perez Goodwyn P; Katsumata-Wada A; Okada K
    J Insect Physiol; 2009 Sep; 55(9):855-61. PubMed ID: 19523956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic duck feathers and their simulation on textile substrates for water repellent treatment.
    Liu Y; Chen X; Xin JH
    Bioinspir Biomim; 2008 Dec; 3(4):046007. PubMed ID: 18997276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superior water repellency of water strider legs with hierarchical structures: experiments and analysis.
    Feng XQ; Gao X; Wu Z; Jiang L; Zheng QS
    Langmuir; 2007 Apr; 23(9):4892-6. PubMed ID: 17385899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Air at hydrophobic surfaces and kinetics of three phase contact formation.
    Krasowska M; Zawala J; Malysa K
    Adv Colloid Interface Sci; 2009; 147-148():155-69. PubMed ID: 19036351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting behavior of polymer coated nanoporous anodic alumina films: transition from super-hydrophilicity to super-hydrophobicity.
    Mateo JN; Kulkarni SS; Das L; Bandyopadhyay S; Tepper GC; Wynne KJ; Bandyopadhyay S
    Nanotechnology; 2011 Jan; 22(3):035703. PubMed ID: 21149956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of TiO2/EP super-hydrophobic thin film on filter paper surface.
    Gao Z; Zhai X; Liu F; Zhang M; Zang D; Wang C
    Carbohydr Polym; 2015 Sep; 128():24-31. PubMed ID: 26005136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.