BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 18296337)

  • 21. Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method.
    Hedrén E; Diaz V; Svanberg U
    Eur J Clin Nutr; 2002 May; 56(5):425-30. PubMed ID: 12001013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of style of processing on retention and bioaccessibility of beta-carotene in cassava (Manihot esculanta, Crantz).
    Thakkar SK; Huo T; Maziya-Dixon B; Failla ML
    J Agric Food Chem; 2009 Feb; 57(4):1344-8. PubMed ID: 19199597
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developing an emulsifier system to improve the bioaccessibility of carotenoids.
    Fernández-García E; Rincón F; Pérez-Gálvez A
    J Agric Food Chem; 2008 Nov; 56(21):10384-90. PubMed ID: 18937490
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selective factors governing in vitro β-carotene bioaccessibility: negative influence of low filtration cutoffs and alterations by emulsifiers and food matrices.
    Corte-Real J; Richling E; Hoffmann L; Bohn T
    Nutr Res; 2014 Dec; 34(12):1101-10. PubMed ID: 25476193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of coenzyme Q10 absorption using an in vitro digestion-Caco-2 cell model.
    Bhagavan HN; Chopra RK; Craft NE; Chitchumroonchokchai C; Failla ML
    Int J Pharm; 2007 Mar; 333(1-2):112-7. PubMed ID: 17092667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioaccessibility of beta-carotene, lutein, and lycopene from fruits and vegetables.
    Goñi I; Serrano J; Saura-Calixto F
    J Agric Food Chem; 2006 Jul; 54(15):5382-7. PubMed ID: 16848521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of an in vitro digestion method to assess carotenoid bioavailability from meals.
    Garrett DA; Failla ML; Sarama RJ
    J Agric Food Chem; 1999 Oct; 47(10):4301-9. PubMed ID: 10552806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micellarization and intestinal cell uptake of beta-carotene and lutein from drumstick (Moringa oleifera) leaves.
    Pullakhandam R; Failla ML
    J Med Food; 2007 Jun; 10(2):252-7. PubMed ID: 17651060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of fats and oils on the bioaccessibility of carotenoids and vitamin E in vegetables.
    Nagao A; Kotake-Nara E; Hase M
    Biosci Biotechnol Biochem; 2013; 77(5):1055-60. PubMed ID: 23649270
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An ex vivo intestinal absorption model is more effective than an in vitro cell model to characterise absorption of dietary carotenoids following simulated gastrointestinal digestion.
    Kalungwana N; Marshall L; Mackie A; Boesch C
    Food Res Int; 2023 Apr; 166():112558. PubMed ID: 36914337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoemulsion delivery systems: influence of carrier oil on β-carotene bioaccessibility.
    Qian C; Decker EA; Xiao H; McClements DJ
    Food Chem; 2012 Dec; 135(3):1440-7. PubMed ID: 22953878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of the interaction of heat-processing style and fat type on the micellarization of lipid-soluble pigments from green and red pungent peppers (Capsicum annuum).
    Victoria-Campos CI; Ornelas-Paz Jde J; Yahia EM; Failla ML
    J Agric Food Chem; 2013 Apr; 61(15):3642-53. PubMed ID: 23517119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Absorption, metabolism, and transport of carotenoids.
    Parker RS
    FASEB J; 1996 Apr; 10(5):542-51. PubMed ID: 8621054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Turmeric, red pepper, and black pepper affect carotenoids solubilized micelles properties and bioaccessibility: Capsaicin/piperine improves and curcumin inhibits carotenoids uptake and transport in Caco-2 cells.
    Shilpa S; Shwetha HJ; Perumal MK; Ambedkar R; Hanumanthappa M; Baskaran V; Lakshminarayana R
    J Food Sci; 2021 Nov; 86(11):4877-4891. PubMed ID: 34658029
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioaccessibility and intestinal cell uptake of astaxanthin from salmon and commercial supplements.
    Chitchumroonchokchai C; Failla ML
    Food Res Int; 2017 Sep; 99(Pt 2):936-943. PubMed ID: 28847430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supplementation of test meals with fat-free phytosterol products can reduce cholesterol micellarization during simulated digestion and cholesterol accumulation by Caco-2 cells.
    Bohn T; Tian Q; Chitchumroonchokchai C; Failla ML; Schwartz SJ; Cotter R; Waksman JA
    J Agric Food Chem; 2007 Jan; 55(2):267-72. PubMed ID: 17227052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of lutein bioavailability from meals and a supplement using simulated digestion and caco-2 human intestinal cells.
    Chitchumroonchokchai C; Schwartz SJ; Failla ML
    J Nutr; 2004 Sep; 134(9):2280-6. PubMed ID: 15333717
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioaccessibility of carotenoids from Chlorella vulgaris and Chlamydomonas reinhardtii.
    Gille A; Trautmann A; Posten C; Briviba K
    Int J Food Sci Nutr; 2015 Aug; 67(5):507-13. PubMed ID: 27146695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Beta-carotene micellarization during in vitro digestion and uptake by Caco-2 cells is directly proportional to beta-carotene content in different genotypes of cassava.
    Thakkar SK; Maziya-Dixon B; Dixon AG; Failla ML
    J Nutr; 2007 Oct; 137(10):2229-33. PubMed ID: 17885003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.