BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 18296337)

  • 41. Micellarisation of carotenoids from raw and cooked vegetables.
    Ryan L; O'Connell O; O'Sullivan L; Aherne SA; O'Brien NM
    Plant Foods Hum Nutr; 2008 Sep; 63(3):127-33. PubMed ID: 18587647
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combining the dynamic TNO-gastrointestinal tract system with a Caco-2 cell culture model: application to the assessment of lycopene and alpha-tocopherol bioavailability from a whole food.
    Déat E; Blanquet-Diot S; Jarrige JF; Denis S; Beyssac E; Alric M
    J Agric Food Chem; 2009 Dec; 57(23):11314-20. PubMed ID: 19899761
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Particle size reduction leading to cell wall rupture is more important for the β-carotene bioaccessibility of raw compared to thermally processed carrots.
    Lemmens L; Van Buggenhout S; Van Loey AM; Hendrickx ME
    J Agric Food Chem; 2010 Dec; 58(24):12769-76. PubMed ID: 21121612
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis and bioaccessibility of Fe-pheophytin derivatives from crude spinach extract.
    Nelson RE; Ferruzzi MG
    J Food Sci; 2008 Jun; 73(5):H86-91. PubMed ID: 18577000
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency.
    Fernández-García E; Carvajal-Lérida I; Pérez-Gálvez A
    Nutr Res; 2009 Nov; 29(11):751-60. PubMed ID: 19932863
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of Two Static in Vitro Digestion Methods for Screening the Bioaccessibility of Carotenoids in Fruits, Vegetables, and Animal Products.
    Rodrigues DB; Chitchumroonchokchai C; Mariutti LRB; Mercadante AZ; Failla ML
    J Agric Food Chem; 2017 Dec; 65(51):11220-11228. PubMed ID: 29205039
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dietary fat composition, food matrix and relative polarity modulate the micellarization and intestinal uptake of carotenoids from vegetables and fruits.
    Mashurabad PC; Palika R; Jyrwa YW; Bhaskarachary K; Pullakhandam R
    J Food Sci Technol; 2017 Feb; 54(2):333-341. PubMed ID: 28242932
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A guide for the evaluation of in vitro bioaccessibility of carotenoids.
    Xavier AAO; Mercadante AZ
    Methods Enzymol; 2022; 674():297-327. PubMed ID: 36008010
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A fast and simplified method to estimate bioaccessibility of carotenoids from plant tissues.
    Morelli L; Rodriguez-Concepcion M
    Methods Enzymol; 2022; 674():329-341. PubMed ID: 36008011
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cellular transport of lutein is greater from uncooked rather than cooked spinach irrespective of whether it is fresh, frozen, or canned.
    O'Sullivan L; Ryan L; Aherne SA; O'Brien NM
    Nutr Res; 2008 Aug; 28(8):532-8. PubMed ID: 19083456
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro digestion of betalainic foods. Stability and bioaccessibility of betaxanthins and betacyanins and antioxidative potential of food digesta.
    Tesoriere L; Fazzari M; Angileri F; Gentile C; Livrea MA
    J Agric Food Chem; 2008 Nov; 56(22):10487-92. PubMed ID: 18959410
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Divalent minerals decrease micellarization and uptake of carotenoids and digestion products into Caco-2 cells.
    Biehler E; Hoffmann L; Krause E; Bohn T
    J Nutr; 2011 Oct; 141(10):1769-76. PubMed ID: 21865558
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Carotenoid content of commonly consumed herbs and assessment of their bioaccessibility using an in vitro digestion model.
    Daly T; Jiwan MA; O'Brien NM; Aherne SA
    Plant Foods Hum Nutr; 2010 Jun; 65(2):164-9. PubMed ID: 20443063
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Stability and bioaccessibility of isoflavones from soy bread during in vitro digestion.
    Walsh KR; Zhang YC; Vodovotz Y; Schwartz SJ; Failla ML
    J Agric Food Chem; 2003 Jul; 51(16):4603-9. PubMed ID: 14705884
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vitro bioaccessibility of beta-carotene from heat-processed orange-fleshed sweet potato.
    Bengtsson A; Larsson Alminger M; Svanberg U
    J Agric Food Chem; 2009 Oct; 57(20):9693-8. PubMed ID: 19807125
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of microfluidization on in vitro micellization and intestinal cell uptake of lutein from Chlorella vulgaris.
    Cha KH; Lee JY; Song DG; Kim SM; Lee DU; Jeon JY; Pan CH
    J Agric Food Chem; 2011 Aug; 59(16):8670-4. PubMed ID: 21776960
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Design of nano-laminated coatings to control bioavailability of lipophilic food components.
    McClements DJ
    J Food Sci; 2010; 75(1):R30-42. PubMed ID: 20492193
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Absorption of anthocyanins from blueberry extracts by caco-2 human intestinal cell monolayers.
    Yi W; Akoh CC; Fischer J; Krewer G
    J Agric Food Chem; 2006 Jul; 54(15):5651-8. PubMed ID: 16848559
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Increased bioavailability of ubiquinol compared to that of ubiquinone is due to more efficient micellarization during digestion and greater GSH-dependent uptake and basolateral secretion by Caco-2 cells.
    Failla ML; Chitchumroonchokchai C; Aoki F
    J Agric Food Chem; 2014 Jul; 62(29):7174-82. PubMed ID: 24979483
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of microfluidization on bioaccessibility of carotenoids from Chlorella ellipsoidea during simulated digestion.
    Cha KH; Koo SY; Song DG; Pan CH
    J Agric Food Chem; 2012 Sep; 60(37):9437-42. PubMed ID: 22946699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.