These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 18296382)
1. Physiological role of dietary free glutamate in the food digestion. Uneyama H; San Gabriel A; Kawai M; Tomoe M; Torii K Asia Pac J Clin Nutr; 2008; 17 Suppl 1():372-5. PubMed ID: 18296382 [TBL] [Abstract][Full Text] [Related]
2. Digestive physiology of the pig symposium: detection of dietary glutamate via gut-brain axis. Bannai M; Torii K J Anim Sci; 2013 May; 91(5):1974-81. PubMed ID: 23345555 [TBL] [Abstract][Full Text] [Related]
3. A genetic approach for investigating vagal sensory roles in regulation of gastrointestinal function and food intake. Fox EA Auton Neurosci; 2006 Jun; 126-127():9-29. PubMed ID: 16677865 [TBL] [Abstract][Full Text] [Related]
4. Biological significance of glutamate signaling during digestion of food through the gut-brain axis. Kitamura A; Tsurugizawa T; Torii K Digestion; 2011; 83 Suppl 1():37-43. PubMed ID: 21389727 [TBL] [Abstract][Full Text] [Related]
5. [Gut nutrient sensing by the abdominal vagus]. Uneyama H; Tanaka T; Torii K Nihon Yakurigaku Zasshi; 2004 Oct; 124(4):210-8. PubMed ID: 15467254 [TBL] [Abstract][Full Text] [Related]
6. Luminal amino acid sensing in the rat gastric mucosa. Uneyama H; Niijima A; San Gabriel A; Torii K Am J Physiol Gastrointest Liver Physiol; 2006 Dec; 291(6):G1163-70. PubMed ID: 16809638 [TBL] [Abstract][Full Text] [Related]
7. Roles of central glutamate, acetylcholine and CGRP receptors in gastrointestinal afferent inputs to vagal preganglionic neurones. Partosoedarso ER; Blackshaw LA Auton Neurosci; 2000 Sep; 83(1-2):37-48. PubMed ID: 11023627 [TBL] [Abstract][Full Text] [Related]
9. The role of gastrointestinal vagal afferents in the control of food intake: current prospects. Schwartz GJ Nutrition; 2000 Oct; 16(10):866-73. PubMed ID: 11054591 [TBL] [Abstract][Full Text] [Related]
10. Physiological roles of dietary glutamate signaling via gut-brain axis due to efficient digestion and absorption. Torii K; Uneyama H; Nakamura E J Gastroenterol; 2013 Apr; 48(4):442-51. PubMed ID: 23463402 [TBL] [Abstract][Full Text] [Related]
11. Gastrointestinal nutrient chemosensing and the gut-brain axis: significance of glutamate signaling for normal digestion. Nakamura E; Uneyama H; Torii K J Gastroenterol Hepatol; 2013 Dec; 28 Suppl 4():2-8. PubMed ID: 24251696 [No Abstract] [Full Text] [Related]
12. Nutritional and physiological significance of luminal glutamate-sensing in the gastrointestinal functions. Uneyama H Yakugaku Zasshi; 2011; 131(12):1699-709. PubMed ID: 22129863 [TBL] [Abstract][Full Text] [Related]
14. Glutamatergic functions of primary afferent neurons with special emphasis on vagal afferents. Raab M; Neuhuber WL Int Rev Cytol; 2007; 256():223-75. PubMed ID: 17241909 [TBL] [Abstract][Full Text] [Related]
15. The future of GI and liver research: editorial perspectives. IV. Visceral afferents: an update. Raybould HE Am J Physiol Gastrointest Liver Physiol; 2003 Jun; 284(6):G880-2. PubMed ID: 12736143 [TBL] [Abstract][Full Text] [Related]
16. New therapeutic strategy for amino acid medicine: effects of dietary glutamate on gut and brain function. Kitamura A; Tsurugizawa T; Uematsu A; Torii K; Uneyama H J Pharmacol Sci; 2012; 118(2):138-44. PubMed ID: 22293294 [TBL] [Abstract][Full Text] [Related]
17. Sensation in the gastrointestinal tract. Ewart WR Comp Biochem Physiol A Comp Physiol; 1985; 82(3):489-93. PubMed ID: 2866869 [TBL] [Abstract][Full Text] [Related]