BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18296415)

  • 1. Extremely intron-rich genes in the alveolate ancestors inferred with a flexible maximum-likelihood approach.
    Csurös M; Rogozin IB; Koonin EV
    Mol Biol Evol; 2008 May; 25(5):903-11. PubMed ID: 18296415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae).
    Cavalier-Smith T
    Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Whence genes in pieces: reconstruction of the exon-intron gene structures of the last eukaryotic common ancestor and other ancestral eukaryotes.
    Koonin EV; Csuros M; Rogozin IB
    Wiley Interdiscip Rev RNA; 2013; 4(1):93-105. PubMed ID: 23139082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes.
    Csuros M; Rogozin IB; Koonin EV
    PLoS Comput Biol; 2011 Sep; 7(9):e1002150. PubMed ID: 21935348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin and evolution of spliceosomal introns.
    Rogozin IB; Carmel L; Csuros M; Koonin EV
    Biol Direct; 2012 Apr; 7():11. PubMed ID: 22507701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of rhizaria with chromalveolates.
    Hackett JD; Yoon HS; Li S; Reyes-Prieto A; Rümmele SE; Bhattacharya D
    Mol Biol Evol; 2007 Aug; 24(8):1702-13. PubMed ID: 17488740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of evolution of exon-intron structure of eukaryotic genes.
    Rogozin IB; Sverdlov AV; Babenko VN; Koonin EV
    Brief Bioinform; 2005 Jun; 6(2):118-34. PubMed ID: 15975222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes.
    Harper JT; Waanders E; Keeling PJ
    Int J Syst Evol Microbiol; 2005 Jan; 55(Pt 1):487-496. PubMed ID: 15653923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EFL GTPase in cryptomonads and the distribution of EFL and EF-1alpha in chromalveolates.
    Gile GH; Patron NJ; Keeling PJ
    Protist; 2006 Oct; 157(4):435-44. PubMed ID: 16904374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues.
    Basu MK; Rogozin IB; Deusch O; Dagan T; Martin W; Koonin EV
    Mol Biol Evol; 2008 Jan; 25(1):111-9. PubMed ID: 17974547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of spliceosomal introns in alveolates.
    Nguyen HD; Yoshihama M; Kenmochi N
    Mol Biol Evol; 2007 May; 24(5):1093-6. PubMed ID: 17331959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MitoCOGs: clusters of orthologous genes from mitochondria and implications for the evolution of eukaryotes.
    Kannan S; Rogozin IB; Koonin EV
    BMC Evol Biol; 2014 Nov; 14():237. PubMed ID: 25421434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three distinct modes of intron dynamics in the evolution of eukaryotes.
    Carmel L; Wolf YI; Rogozin IB; Koonin EV
    Genome Res; 2007 Jul; 17(7):1034-44. PubMed ID: 17495008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rates of intron loss and gain: implications for early eukaryotic evolution.
    Roy SW; Gilbert W
    Proc Natl Acad Sci U S A; 2005 Apr; 102(16):5773-8. PubMed ID: 15827119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A very high fraction of unique intron positions in the intron-rich diatom Thalassiosira pseudonana indicates widespread intron gain.
    Roy SW; Penny D
    Mol Biol Evol; 2007 Jul; 24(7):1447-57. PubMed ID: 17350938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of Fungal Genomes Reveals Commonalities of Intron Gain or Loss and Functions in Intron-Poor Species.
    Lim CS; Weinstein BN; Roy SW; Brown CM
    Mol Biol Evol; 2021 Sep; 38(10):4166-4186. PubMed ID: 33772558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of intron gain and conservation in eukaryotic genes.
    Carmel L; Rogozin IB; Wolf YI; Koonin EV
    BMC Evol Biol; 2007 Oct; 7():192. PubMed ID: 17935625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary convergence on highly-conserved 3' intron structures in intron-poor eukaryotes and insights into the ancestral eukaryotic genome.
    Irimia M; Roy SW
    PLoS Genet; 2008 Aug; 4(8):e1000148. PubMed ID: 18688272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New maximum likelihood estimators for eukaryotic intron evolution.
    Nguyen HD; Yoshihama M; Kenmochi N
    PLoS Comput Biol; 2005 Dec; 1(7):e79. PubMed ID: 16389300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of reverse transcriptase in intron gain and loss mechanisms.
    Cohen NE; Shen R; Carmel L
    Mol Biol Evol; 2012 Jan; 29(1):179-86. PubMed ID: 21804076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.