BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 18296415)

  • 41. Comparative genomic analysis of fungal genomes reveals intron-rich ancestors.
    Stajich JE; Dietrich FS; Roy SW
    Genome Biol; 2007; 8(10):R223. PubMed ID: 17949488
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome reduction as the dominant mode of evolution.
    Wolf YI; Koonin EV
    Bioessays; 2013 Sep; 35(9):829-37. PubMed ID: 23801028
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Large-scale phylogenomic analyses reveal that two enigmatic protist lineages, telonemia and centroheliozoa, are related to photosynthetic chromalveolates.
    Burki F; Inagaki Y; Bråte J; Archibald JM; Keeling PJ; Cavalier-Smith T; Sakaguchi M; Hashimoto T; Horak A; Kumar S; Klaveness D; Jakobsen KS; Pawlowski J; Shalchian-Tabrizi K
    Genome Biol Evol; 2009 Jul; 1():231-8. PubMed ID: 20333193
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?
    Koonin EV
    Biol Direct; 2006 Aug; 1():22. PubMed ID: 16907971
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Widespread intron loss suggests retrotransposon activity in ancient apicomplexans.
    Roy SW; Penny D
    Mol Biol Evol; 2007 Sep; 24(9):1926-33. PubMed ID: 17522085
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Reevaluation of the evolutionary position of opalinids based on 18S rDNA, and alpha- and beta-tubulin gene phylogenies.
    Nishi A; Ishida K; Endoh H
    J Mol Evol; 2005 Jun; 60(6):695-705. PubMed ID: 15931497
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids.
    Harper JT; Keeling PJ
    Mol Biol Evol; 2003 Oct; 20(10):1730-5. PubMed ID: 12885964
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana.
    Roy SW; Penny D
    Mol Biol Evol; 2007 Jan; 24(1):171-81. PubMed ID: 17065597
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Large-scale intron conservation and order-of-magnitude variation in intron loss/gain rates in apicomplexan evolution.
    Roy SW; Penny D
    Genome Res; 2006 Oct; 16(10):1270-5. PubMed ID: 16963708
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phylogenetic relationships of 3/3 and 2/2 hemoglobins in Archaeplastida genomes to bacterial and other eukaryote hemoglobins.
    Vinogradov SN; Fernández I; Hoogewijs D; Arredondo-Peter R
    Mol Plant; 2011 Jan; 4(1):42-58. PubMed ID: 20952597
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The chaperonin genes of jakobid and jakobid-like flagellates: implications for eukaryotic evolution.
    Archibald JM; O'Kelly CJ; Doolittle WF
    Mol Biol Evol; 2002 Apr; 19(4):422-31. PubMed ID: 11919283
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evolutionary dynamics of triosephosphate isomerase gene intron location pattern in Metazoa: A new perspective on intron evolution in animals.
    Chen B; Shao J; Zhuang H; Wen J
    Gene; 2017 Feb; 602():24-32. PubMed ID: 27864009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Whole-genome analysis reveals molecular innovations and evolutionary transitions in chromalveolate species.
    Martens C; Vandepoele K; Van de Peer Y
    Proc Natl Acad Sci U S A; 2008 Mar; 105(9):3427-32. PubMed ID: 18299576
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mitochondrial group II introns in the raphidophycean flagellate Chattonella spp. suggest a diatom-to-Chattonella lateral group II intron transfer.
    Kamikawa R; Masuda I; Demura M; Oyama K; Yoshimatsu S; Kawachi M; Sako Y
    Protist; 2009 Aug; 160(3):364-75. PubMed ID: 19346162
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preferential loss and gain of introns in 3' portions of genes suggests a reverse-transcription mechanism of intron insertion.
    Sverdlov AV; Babenko VN; Rogozin IB; Koonin EV
    Gene; 2004 Aug; 338(1):85-91. PubMed ID: 15302409
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid.
    Waller RF; Gornik SG; Koreny L; Pain A
    Commun Integr Biol; 2016; 9(1):e1116653. PubMed ID: 27066182
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intron position conservation across eukaryotic lineages in tubulin genes.
    Perumal BS; Sakharkar KR; Chow VT; Pandjassarame K; Sakharkar MK
    Front Biosci; 2005 Sep; 10():2412-9. PubMed ID: 15970504
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Myosin repertoire expansion coincides with eukaryotic diversification in the Mesoproterozoic era.
    Kollmar M; Mühlhausen S
    BMC Evol Biol; 2017 Sep; 17(1):211. PubMed ID: 28870165
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The evolutionary gain of spliceosomal introns: sequence and phase preferences.
    Qiu WG; Schisler N; Stoltzfus A
    Mol Biol Evol; 2004 Jul; 21(7):1252-63. PubMed ID: 15014153
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coevolution of genomic intron number and splice sites.
    Irimia M; Penny D; Roy SW
    Trends Genet; 2007 Jul; 23(7):321-5. PubMed ID: 17442445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.