These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 18296524)

  • 81. The two-component system ChrSA is crucial for haem tolerance and interferes with HrrSA in haem-dependent gene regulation in Corynebacterium glutamicum.
    Heyer A; Gätgens C; Hentschel E; Kalinowski J; Bott M; Frunzke J
    Microbiology (Reading); 2012 Dec; 158(Pt 12):3020-3031. PubMed ID: 23038807
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Nitrate and nitrite regulation of the Fnr-dependent aeg-46.5 promoter of Escherichia coli K-12 is mediated by competition between homologous response regulators (NarL and NarP) for a common DNA-binding site.
    Darwin AJ; Stewart V
    J Mol Biol; 1995 Aug; 251(1):15-29. PubMed ID: 7643383
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Complex regulation of the phosphoenolpyruvate carboxykinase gene pck and characterization of its GntR-type regulator IolR as a repressor of myo-inositol utilization genes in Corynebacterium glutamicum.
    Klaffl S; Brocker M; Kalinowski J; Eikmanns BJ; Bott M
    J Bacteriol; 2013 Sep; 195(18):4283-96. PubMed ID: 23873914
    [TBL] [Abstract][Full Text] [Related]  

  • 84. The ClgR protein regulates transcription of the clpP operon in Bifidobacterium breve UCC 2003.
    Ventura M; Zhang Z; Cronin M; Canchaya C; Kenny JG; Fitzgerald GF; van Sinderen D
    J Bacteriol; 2005 Dec; 187(24):8411-26. PubMed ID: 16321946
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis.
    Nakano MM; Zhu Y; Lacelle M; Zhang X; Hulett FM
    Mol Microbiol; 2000 Sep; 37(5):1198-207. PubMed ID: 10972836
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Direct and indirect regulation of the ycnKJI operon involved in copper uptake through two transcriptional repressors, YcnK and CsoR, in Bacillus subtilis.
    Hirooka K; Edahiro T; Kimura K; Fujita Y
    J Bacteriol; 2012 Oct; 194(20):5675-87. PubMed ID: 22904286
    [TBL] [Abstract][Full Text] [Related]  

  • 87. The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032.
    Rey DA; Nentwich SS; Koch DJ; Rückert C; Pühler A; Tauch A; Kalinowski J
    Mol Microbiol; 2005 May; 56(4):871-87. PubMed ID: 15853877
    [TBL] [Abstract][Full Text] [Related]  

  • 88. The surface (S)-layer gene cspB of Corynebacterium glutamicum is transcriptionally activated by a LuxR-type regulator and located on a 6 kb genomic island absent from the type strain ATCC 13032.
    Hansmeier N; Albersmeier A; Tauch A; Damberg T; Ros R; Anselmetti D; Pühler A; Kalinowski J
    Microbiology (Reading); 2006 Apr; 152(Pt 4):923-935. PubMed ID: 16549657
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Proline reduces the binding of transcriptional regulator ArgR to upstream of argB in Corynebacterium glutamicum.
    Lee SY; Shin HS; Park JS; Kim YH; Min J
    Appl Microbiol Biotechnol; 2010 Mar; 86(1):235-42. PubMed ID: 19798496
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Differences in nitrate reduction between Mycobacterium tuberculosis and Mycobacterium bovis are due to differential expression of both narGHJI and narK2.
    Sohaskey CD; Modesti L
    FEMS Microbiol Lett; 2009 Jan; 290(2):129-34. PubMed ID: 19076631
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Activation of yeaR-yoaG operon transcription by the nitrate-responsive regulator NarL is independent of oxygen- responsive regulator Fnr in Escherichia coli K-12.
    Lin HY; Bledsoe PJ; Stewart V
    J Bacteriol; 2007 Nov; 189(21):7539-48. PubMed ID: 17720788
    [TBL] [Abstract][Full Text] [Related]  

  • 92. The LacI-Type transcriptional regulator AraR acts as an L-arabinose-responsive repressor of L-arabinose utilization genes in Corynebacterium glutamicum ATCC 31831.
    Kuge T; Teramoto H; Yukawa H; Inui M
    J Bacteriol; 2014 Jun; 196(12):2242-54. PubMed ID: 24706742
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The molybdate-responsive Escherichia coli ModE transcriptional regulator coordinates periplasmic nitrate reductase (napFDAGHBC) operon expression with nitrate and molybdate availability.
    McNicholas PM; Gunsalus RP
    J Bacteriol; 2002 Jun; 184(12):3253-9. PubMed ID: 12029041
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Regulation of narK gene expression in Escherichia coli in response to anaerobiosis, nitrate, iron, and molybdenum.
    Kolesnikow T; Schröder I; Gunsalus RP
    J Bacteriol; 1992 Nov; 174(22):7104-11. PubMed ID: 1429433
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Aerobic regulation of cytochrome d oxidase (cydAB) operon expression in Escherichia coli: roles of Fnr and ArcA in repression and activation.
    Cotter PA; Melville SB; Albrecht JA; Gunsalus RP
    Mol Microbiol; 1997 Aug; 25(3):605-15. PubMed ID: 9302022
    [TBL] [Abstract][Full Text] [Related]  

  • 96. A game with many players: control of gdh transcription in Corynebacterium glutamicum.
    Hänssler E; Müller T; Palumbo K; Patek M; Brocker M; Krämer R; Burkovski A
    J Biotechnol; 2009 Jun; 142(2):114-22. PubMed ID: 19394370
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Transcriptional regulation of the proton translocating NADH dehydrogenase genes (nuoA-N) of Escherichia coli by electron acceptors, electron donors and gene regulators.
    Bongaerts J; Zoske S; Weidner U; Unden G
    Mol Microbiol; 1995 May; 16(3):521-34. PubMed ID: 7565112
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Molecular characterization of the ferric-uptake regulator, fur, from Staphylococcus aureus.
    Xiong A; Singh VK; Cabrera G; Jayaswal RK
    Microbiology (Reading); 2000 Mar; 146 ( Pt 3)():659-668. PubMed ID: 10746769
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Regulation of L-lactate utilization by the FadR-type regulator LldR of Corynebacterium glutamicum.
    Georgi T; Engels V; Wendisch VF
    J Bacteriol; 2008 Feb; 190(3):963-71. PubMed ID: 18039772
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The extracytoplasmic function σ factor σ(C) regulates expression of a branched quinol oxidation pathway in Corynebacterium glutamicum.
    Toyoda K; Inui M
    Mol Microbiol; 2016 May; 100(3):486-509. PubMed ID: 26789738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.